(not yet a complete one)
Fewest Switches Surface Hopping (FSSH)
Tully, J. C. Molecular Dynamics with Electronic Transitions. J. Chem. Phys. 1990, 93, 1061–1071.
Global Flux Surface Hopping (GFSH)
Wang, L.; Trivedi, D.; Prezhdo, O. V. Global Flux Surface Hopping Approach for Mixed Quantum-Classical Dynamics. J. Chem. Theory Comput. 2014, 10, 3598–3605.
Markov State Surface Hopping (MSSH)
Tully, J. C.; Preston, R. K. Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2. J. Chem. Phys. 1971, 55, 562–572.
Akimov, A. V.; Trivedi, D.; Wang, L.; Prezhdo, O. V. Analysis of the Trajectory Surface Hopping Method from the Markov State Model Perspective. J. Phys. Soc. Jpn. 2015, 84, 094002.
Nuclear dynamics: Verlet (velocity form) algorithm
Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159, 98–103.
Src: dyn/Verlet.cpp dyn/Verlet_nvt.cpp dyn/Dynamics_Nuclear.cpp dyn/nuclear/Nuclear.cpp scripts/state/State_methods1.cpp scripts/state/State_methods2.cpp
Nuclear dynamics: Entangled Trajectories Hamiltonian Dynamics (ETHD)
Smith, B.; Akimov, A. V. Entangled Trajectories Hamiltonian Dynamics for Treating Quantum Nuclear Effects. The Journal of Chemical Physics 2018, 148 (14), 144106.
Src: dyn/Verlet.cpp dyn/Verlet_nvt.cpp hamiltonian/nHamiltonian_Generic/nHamiltonian_compute_ETHD.cpp
Electron-Nuclear dynamics: Ehrenfest Dynamics
Akimov, A. V. Libra: An Open-Source “Methodology Discovery” Library for Quantum and Classical Dynamics Simulations. J. Comput. Chem. 2016, 37, 1626–1649.
Theory and derivations: Ehrenfest.pdf
Src: dyn/Ehrenfest.cpp
Rigid body dynamics: Numerically exact integration algorithm
Hernandez de la Pena, L.; van Zon, R.; Schofield, J.; Opps, S. B. "Discontinuous molecular dynamics for semiflexible and rigid bodies" J. Chem. Phys. 2007, 126, 074105
van Zon, R.; Schofield, J. "Numerical implementation of the exact dynamics of free rigid bodies" J. Comp. Phys. 2007, 225, 145-164
Rigid body dynamics: DLML (Dullweber-Leimkuhler-McLahlan) algorithm
Dullweber, A.; Leimkuhler, B.; McLachlan, R."Symplectic splitting methods for rigid body molecular dynamics" J. Chem. Phys. 1997, 107, 5840-5851
Rigid body dynamics: NO_SQUISH algorithm
Miller, T. F.; Eleftheriou, M.; Pattnaik, P.; Ndirango, A.; Newns, D.; Martyna, G. J. Symplectic Quaternion Scheme for Biophysical Molecular Dynamics. J. Chem. Phys. 2002, 116, 8649–8659.
Rigid body dynamics: KLN algorithm
Kamberaj, H.; Low, R. J; Neal, M. P. "Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules" J. Chem. Phys. 2005, 122, 224114-1 - 224114-30
Rigid body dynamics: Terec and qTerec algorithm
Akimov, A. V.; Kolomeisky, A. B. Recursive Taylor Series Expansion Method for Rigid-Body Molecular Dynamics. J. Chem. Theory Comput. 2011, 7, 3062–3071.
Rigid body dynamics: Algorithm of Omelyan
Omelyan I. P. "Algorithm for numerical integration of the rigid-body equations of motion" Phys. Rev. E. 1998, 58, 1169-1172
Barostat: KLN algorithm (for rigid bodies or all-atomic dynamics)
Both isotropic dilation/contraction and anisotropic (flexible cell) modes are possible
Kamberaj, H.; Low, R. J; Neal, M. P. "Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules" J. Chem. Phys. 2005, 122, 224114-1 - 224114-30
Thermostat: Nose-Hoover thermostat according to the KLN algorithm (for rigid bodies or all-atomic dynamics)
Hoover, W. G. Nose-Hoover Nonequilibrium Dynamics and Statistical Mechanics. Mol. Simul. 2007, 33, 13–19.
Kamberaj, H.; Low, R. J; Neal, M. P. "Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules" J. Chem. Phys. 2005, 122, 224114-1 - 224114-30
Src: dyn/thermostat/Thermostat_methods.cpp scripts/state/State_methods1.cpp scripts/state/State_methods2.cpp
Thermostat: Nose-Poincare thermostat
Nose, S. An Improved Symplectic Integrator for Nose-Poincare Thermostat. J. Phys. Soc. Jpn. 2001, 70, 75–77.
Bond, S. D.; Leimkuhler, B. J.; Laird, B. B. The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics. J. Comput. Phys. 1999, 151, 114–134.
Kleinerman, D. S.; Czaplewski, C.; Liwo, A.; Scheraga, H. A. Implementations of Nosé–Hoover and Nosé–Poincaré Thermostats in Mesoscopic Dynamic Simulations with the United-Residue Model of a Polypeptide Chain. J. Chem. Phys. 2008, 128, 245103.
Src: dyn/thermostat/Thermostat_methods.cpp scripts/state/State_methods1.cpp scripts/state/State_methods2.cpp
Basic Molecular Mechanics Potentials
Re-usable functions that can be utilized on their own or within a given force field
Ewald-type lattice sums for electrostatic (1/R) and dispersion (1/R^6) interactions
Karasawa, N.; Goddard III, W. A. Acceleration of Convergence for Lattice Sums. J. Phys. Chem. 1989, 93, 7320–7327.
Procacci, P.; Marchi, M. "Taming the Ewald sum in molecular dynamics simulations of solvated proteins via a multiple time step algorithm" J.Chem.Phys. 1996, 104, 3003-3012
Komeiji, Y. "Ewald summation and multiple time step methods for molecular dynamics simulation of biological molecules" J. Mol. Struct. (Theochem) 2000, 530, 237-243
Charge Equilibration approach (qEQ)
Rappe, A. K.; Goddard, W. A. Charge Equilibration for Molecular Dynamics Simulations. J. Phys. Chem. 1991, 95, 3358–3363.
Src: solvers/qeq
Verlet and Neighbor Cell Lists. Simulation cell variables
Needed to execute efficient MM calculations in periodic systems.
Src: cell
Force Field: DREIDING force field
Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: A Generic Force Field for Molecular Simulations. Journal of Physical Chemistry 1990, 94, 8897–8909.
Src: forcefield hamiltonian/Hamiltonian_Atomistic/Hamiltonian_MM
Force Field: Tripos 5.2 force field
Clark, M.; Cramer III, R. D.; Van Opdenbosch, N. Validation of the General Purpose Tripos 5.2 Force Field. J. Comput. Chem. 1989, 10, 982–1012.
Src: forcefield hamiltonian/Hamiltonian_Atomistic/Hamiltonian_MM
Force Field: UFF (Universal Force Field)
Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.
Src: forcefield hamiltonian/Hamiltonian_Atomistic/Hamiltonian_MM
Force Field: GAFF (General Amber Force Field)
Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174.
Src: forcefield hamiltonian/Hamiltonian_Atomistic/Hamiltonian_MM
Force Field: MMFF94 (Merck Force Field)
Halgren, T. A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519.
Halgren, T. A. Merck Molecular Force Field. II. MMFF94 van Der Waals and Electrostatic Parameters for Intermolecular Interactions. J. Comput. Chem. 1996, 17, 520–552.
Src: forcefield hamiltonian/Hamiltonian_Atomistic/Hamiltonian_MM