Libra: An open-source "Methodology Discovery" Library



List of the code's capabilities


(not yet a complete one)


  • Fewest Switches Surface Hopping (FSSH)

    Tully, J. C. Molecular Dynamics with Electronic Transitions. J. Chem. Phys. 1990, 93, 1061–1071.

    Src: dyn/tsh_prob_fssh.cpp dyn/methods_tsh.cpp

  • Global Flux Surface Hopping (GFSH)

    Wang, L.; Trivedi, D.; Prezhdo, O. V. Global Flux Surface Hopping Approach for Mixed Quantum-Classical Dynamics. J. Chem. Theory Comput. 2014, 10, 3598–3605.

    Src: dyn/tsh_prob_gfsh.cpp dyn/methods_tsh.cpp

  • Markov State Surface Hopping (MSSH)

    Tully, J. C.; Preston, R. K. Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2. J. Chem. Phys. 1971, 55, 562–572.

    Akimov, A. V.; Trivedi, D.; Wang, L.; Prezhdo, O. V. Analysis of the Trajectory Surface Hopping Method from the Markov State Model Perspective. J. Phys. Soc. Jpn. 2015, 84, 094002.

    Src: dyn/tsh_prob_mssh.cpp dyn/methods_tsh.cpp



  • Rigid body dynamics: Numerically exact integration algorithm

    Hernandez de la Pena, L.; van Zon, R.; Schofield, J.; Opps, S. B. "Discontinuous molecular dynamics for semiflexible and rigid bodies" J. Chem. Phys. 2007, 126, 074105

    van Zon, R.; Schofield, J. "Numerical implementation of the exact dynamics of free rigid bodies" J. Comp. Phys. 2007, 225, 145-164

    Src: dyn_rigidbody/RigidBody_methods5_1.cpp

  • Rigid body dynamics: DLML (Dullweber-Leimkuhler-McLahlan) algorithm

    Dullweber, A.; Leimkuhler, B.; McLachlan, R."Symplectic splitting methods for rigid body molecular dynamics" J. Chem. Phys. 1997, 107, 5840-5851

    Src: dyn_rigidbody/RigidBody_methods5_2.cpp

  • Rigid body dynamics: NO_SQUISH algorithm

    Miller, T. F.; Eleftheriou, M.; Pattnaik, P.; Ndirango, A.; Newns, D.; Martyna, G. J. Symplectic Quaternion Scheme for Biophysical Molecular Dynamics. J. Chem. Phys. 2002, 116, 8649–8659.

    Src: dyn_rigidbody/RigidBody_methods5_3.cpp

  • Rigid body dynamics: KLN algorithm

    Kamberaj, H.; Low, R. J; Neal, M. P. "Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules" J. Chem. Phys. 2005, 122, 224114-1 - 224114-30

    Src: dyn_rigidbody/RigidBody_methods5_4.cpp

  • Rigid body dynamics: Terec and qTerec algorithm

    Akimov, A. V.; Kolomeisky, A. B. Recursive Taylor Series Expansion Method for Rigid-Body Molecular Dynamics. J. Chem. Theory Comput. 2011, 7, 3062–3071.

    Src: dyn_rigidbody/RigidBody_methods5_5.cpp

  • Rigid body dynamics: Algorithm of Omelyan

    Omelyan I. P. "Algorithm for numerical integration of the rigid-body equations of motion" Phys. Rev. E. 1998, 58, 1169-1172

    Src: dyn_rigidbody/RigidBody_methods5_6.cpp


  • Barostat: KLN algorithm (for rigid bodies or all-atomic dynamics)

    Both isotropic dilation/contraction and anisotropic (flexible cell) modes are possible

    Kamberaj, H.; Low, R. J; Neal, M. P. "Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules" J. Chem. Phys. 2005, 122, 224114-1 - 224114-30

    Src: dyn/barostat/Barostat_methods.cpp

  • Thermostat: Nose-Hoover thermostat according to the KLN algorithm (for rigid bodies or all-atomic dynamics)

    Hoover, W. G. Nose-Hoover Nonequilibrium Dynamics and Statistical Mechanics. Mol. Simul. 2007, 33, 13–19.

    Kamberaj, H.; Low, R. J; Neal, M. P. "Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules" J. Chem. Phys. 2005, 122, 224114-1 - 224114-30

    Src: dyn/thermostat/Thermostat_methods.cpp scripts/state/State_methods1.cpp scripts/state/State_methods2.cpp

  • Thermostat: Nose-Poincare thermostat

    Nose, S. An Improved Symplectic Integrator for Nose-Poincare Thermostat. J. Phys. Soc. Jpn. 2001, 70, 75–77.

    Bond, S. D.; Leimkuhler, B. J.; Laird, B. B. The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics. J. Comput. Phys. 1999, 151, 114–134.

    Kleinerman, D. S.; Czaplewski, C.; Liwo, A.; Scheraga, H. A. Implementations of Nosé–Hoover and Nosé–Poincaré Thermostats in Mesoscopic Dynamic Simulations with the United-Residue Model of a Polypeptide Chain. J. Chem. Phys. 2008, 128, 245103.

    Src: dyn/thermostat/Thermostat_methods.cpp scripts/state/State_methods1.cpp scripts/state/State_methods2.cpp


  • Basic Molecular Mechanics Potentials

    Re-usable functions that can be utilized on their own or within a given force field

    Src: hamiltonian/Hamiltonian_Atomistic/Hamiltonian_MM pot

  • Ewald-type lattice sums for electrostatic (1/R) and dispersion (1/R^6) interactions

    Karasawa, N.; Goddard III, W. A. Acceleration of Convergence for Lattice Sums. J. Phys. Chem. 1989, 93, 7320–7327.

    Procacci, P.; Marchi, M. "Taming the Ewald sum in molecular dynamics simulations of solvated proteins via a multiple time step algorithm" J.Chem.Phys. 1996, 104, 3003-3012

    Komeiji, Y. "Ewald summation and multiple time step methods for molecular dynamics simulation of biological molecules" J. Mol. Struct. (Theochem) 2000, 530, 237-243

    Src: pot/Potentials_mb_elec.cpp pot/Potentials_mb_vdw.cpp

  • Charge Equilibration approach (qEQ)

    Rappe, A. K.; Goddard, W. A. Charge Equilibration for Molecular Dynamics Simulations. J. Phys. Chem. 1991, 95, 3358–3363.

    Src: solvers/qeq

  • Verlet and Neighbor Cell Lists. Simulation cell variables

    Needed to execute efficient MM calculations in periodic systems.

    Src: cell

  • Force Field: DREIDING force field

    Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: A Generic Force Field for Molecular Simulations. Journal of Physical Chemistry 1990, 94, 8897–8909.

    Src: forcefield hamiltonian/Hamiltonian_Atomistic/Hamiltonian_MM

  • Force Field: Tripos 5.2 force field

    Clark, M.; Cramer III, R. D.; Van Opdenbosch, N. Validation of the General Purpose Tripos 5.2 Force Field. J. Comput. Chem. 1989, 10, 982–1012.

    Src: forcefield hamiltonian/Hamiltonian_Atomistic/Hamiltonian_MM

  • Force Field: UFF (Universal Force Field)

    Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.

    Src: forcefield hamiltonian/Hamiltonian_Atomistic/Hamiltonian_MM

  • Force Field: GAFF (General Amber Force Field)

    Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174.

    Src: forcefield hamiltonian/Hamiltonian_Atomistic/Hamiltonian_MM

  • Force Field: MMFF94 (Merck Force Field)

    Halgren, T. A. Merck Molecular Force Field. I. Basis, Form, Scope, Parameterization, and Performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519.

    Halgren, T. A. Merck Molecular Force Field. II. MMFF94 van Der Waals and Electrostatic Parameters for Intermolecular Interactions. J. Comput. Chem. 1996, 17, 520–552.

    Src: forcefield hamiltonian/Hamiltonian_Atomistic/Hamiltonian_MM