data_stat¶
-
libra_py.data_stat.
bootstrapping
(X, nB, rnd)[source]¶ Bootstrapping the sample
- Parameters
X (list of N int/double) – the original sample
nB (int) – the number of bootstrapping cycles
Returns:
-
libra_py.data_stat.
cmat_distrib
(X, i, j, component, xmin, xmax, dx)[source]¶ Computes the distribution of the matrix element values in the list of CMATRIX(N,N) objects
- Parameters
X (list of CMATRIX(N,N) objects) – the data to be analyzed
i (int) – row index of the matrix element to analyze
j (int) – column index of the matrix element to analyze
component (int = 0 or 1) – determines whether to analyze the real (0) or imaginary (1) component of the data series
xmin (double) – the minimal value of the bin support
xmax (double) – the maximal value of the bin support
dx (double) – the value of the bin support grid spacing
- Returns
( bin_support, dens, cum ), where:
bin_support ( list of doubles ): the range of values the distribution is computed for
dens ( list of doubles ): the probability density
cum ( list of doubles ): the cumulative distribution function
- Return type
-
libra_py.data_stat.
cmat_stat
(X)[source]¶ Computes the average and standard deviation of list of CMATRIX(N,N) objects
- Parameters
X (list of CMATRIX(N,N) objects) – the data to be analyzed
- Returns
(res, res2): where
res ( CMATRIX(N,N) ): average of each matrix element of data
res2 ( CMATRIX(N,N) ): standard deviation of each matrix element of data
- Return type
-
libra_py.data_stat.
cmat_stat2
(X, opt)[source]¶ Computes the norm-N average of a list of CMATRIX(N,N) objects
- Parameters
- Returns
norm-N average of each matrix element of data
- Return type
CMATRIX(N,N)
-
libra_py.data_stat.
compute_density
(X, Y, minx, maxx, dx)[source]¶ Computes the probability density from the non-uniform distribution of pair points
- Parameters
X (list of double) – the original values of x
Y (list of double) – the original values of y
minx (double) – the minimal value of the new X axis
maxx (double) – the max value of the new X axis
dx (double) – the grid spacing of the new X axis
Note
The pair relationship X[i] - Y[i] is expected
- Returns
( nX, nY ): where
nX ( list of doubles ) - new, uniform X axis
nY ( list of doubles ) - renormalized Y axis
- Return type
-
libra_py.data_stat.
find_maxima
(data, params)[source]¶ This function finds all the maxima of the data set and sorts them according to the data The maxima are defined as data[i-1] < data[i] > data[i+1]
- Parameters
data (list of doubles) – data to be analyzed
params (Python dictionary) –
parameters controlling the execution
- Returns
our[i][v], where:
out[i][0] - containing indices of the maximal values
- Return type
list of 2-element lists
Examples
>>> res = find_maxima( [0.01, 1.0, 0.1, 0.25, 0.5, 0.75, -1.0 ], {} ) >>> print res >>> [ [1, 1.0], [5, 0.75] ]
>>> res = find_maxima( [0.01, 0.75, 0.1, 0.25, 0.5, 1.75, -1.0 ], {} ) >>> print res >>> [ [5, 1.75], [1, 0.75] ]
-
libra_py.data_stat.
mat_average
(data)[source]¶ This function computes the average value of the data series
- Parameters
data (list of MATRIX(ndof, 1) objects) – sequence of real-valued ndof-dimensional vectors
- Returns
the average value for each DOF in the time-series
- Return type
MATRIX(ndof, 1)
-
libra_py.data_stat.
mat_center_data
(data)[source]¶ This function centers data on zero, by subtracting the average value from each element, dof by dof
- Parameters
data (list of MATRIX(ndof, 1) objects) – sequence of real-valued ndof-dimensional vectors
- Returns
the fluctuation (deviation) value for each DOF in the time-series (dX(t) = X(t) -<X> )
- Return type
MATRIX(ndof, 1)
-
libra_py.data_stat.
mat_stat
(X)[source]¶ Computes the average and standard deviation of list of MATRIX(N,N) objects
- Parameters
X (list of MATRIX(N,N) objects) – the data to be analyzed
- Returns
(res, res2, dw_bound, up_bound): where
res ( MATRIX(N,N) ): average of each matrix element of data
res2 ( MATRIX(N,N) ): standard deviation of each matrix element of data
dw_bound ( MATRIX(N,N) ): lower bounds of the data for each matrix element
up_bound ( MATRIX(N,N) ): upper bounds of the data for each matrix element
- Return type
-
libra_py.data_stat.
scalar_stat
(data)[source]¶ The function computes some simple descriptive statistics of the scalar data series.
- Parameters
data (list of doubles) – the data to be analyzed
- Returns
(res, res2), where:
res ( double ): average of data
res2 ( double ): standard deviation of data
- Return type
-
libra_py.data_stat.
vec_average
(data)[source]¶ This function computes the average value of the data series
- Parameters
data (list of VECTOR objects) – sequence of real-valued ndof-dimensional vectors
- Returns
the average value for each DOF in the time-series
- Return type
VECTOR
-
libra_py.data_stat.
vec_center_data
(data)[source]¶ This function centers data on zero, by subtracting the average value from each element, dof by dof
- Parameters
data (list of VECTOR objects) – sequence of real-valued ndof-dimensional vectors
- Returns
the fluctuation (deviation) value for each DOF in the time-series (dX(t) = X(t) -<X> )
- Return type
VECTOR