Excited state dynamics with the Effective Fragment Potential method?

Lyudmila V. Slipchenko

Department of Chemistry, Purdue University

- Effective Fragment Potential method (EFP)
- Beyond polarizable embedding
- Prospects for excited state dynamics

Perturbation theory applied to non-interacting fragments

EFP set-up

1. Preparation of EFP fragment parameters general fragment: MAKEFP run (GAMESS)

a set of ab initio calculations on each unique fragment

- Coulomb: set of point multipoles (DMA)
- **Polarization:** static polarizability tensors at LMO (coupled HF)
- Dispersion: dynamic polarizability tensors at LMO (TDHF)
- Exchange-repulsion: wave function & Fock matrix (HF)
- 2. EFP calculation (energy, optimization, MD, MC, ...)
 - EFP-EFP interactions by (semi)-classical formulas
 - QM-EFP interactions via 1-electron terms in QM Hamiltonian

S22 dataset of intermolecular interactions

Mixed complexes:

Lyudmila V. Slipchenko

EFP: full embedding

S22: performance of popular methods

_`
` _
6
6
9
2
S
S

	HB	disp	mixed	overall
HF	3.29	7.24	3.15	4.56
B3LYP	1.77	6.22	2.64	3.54
PBE	1.13	4.53	1.66	2.44
M06	0.89	0.99	0.67	0.85
M06-2X	0.73	0.36	0.32	0.47
ω B97X-D	0.27	0.30	0.42	0.33
MP2	0.24	1.69	0.61	0.88
SCS-MP2	1.54	0.55	0.37	0.80
SCS-CCSD	0.40	0.23	0.08	0.24
Amber	4.64	0.98	0.89	2.12
OPLSAA	4.45	1.07	0.56	1.98
MMFF94	3.61	0.73	0.60	1.61
EFP	1.82	0.57	0.35	0.89
10% error	1.38	0.48	0.39	0.74

J. Chem Theory Comp., 8 (8), 2835–2843 (2012)

S22: performance of force fields

Paton et al, J. Chem. Inf. Model. 2009, 49, 944–955

AmberMMFF94

OPLSAAEFP

Joanna Flick

Dr. Dmytro Kosenkov

Lyudmila V. Slipchenko

EFP: full embedding

EFP vs SAPT

Lyudmila V. Slipchenko

EFP: full embedding

EFP in a nutshell

- rigid-geometry fragment-based polarizable force field
- all EFP force field parameters are obtained from a separate *ab initio* calculation: no fitted parameters
- provides physical insight into intermolecular interaction
- accuracy: 10-15% relative error in interaction energies (similar to MP2, better than many DFT functionals, superior to classical force fields)
- accuracy can be further improved

LibEFP: stand-alone EFP implementation

- written in standard C99
- uses native EFP data format generated by GAMESS
- 2-clause BSD license
- uses BLAS wherever possible for better performance
- available as a shared or static library
- parallelization across multiple nodes using hybrid MPI/ OpenMP

Kaliman and Slipchenko, JCC 34, 2284 (2013) Kaliman and Slipchenko, JCC 36, 129 (2015)

Dr. Ilya Kaliman

http://www.libefp.org/

Lyudmila V. Slipchenko

EFP: full embedding

LibEFP

Lyudmila V. Slipchenko

EFP: full embedding

QM-LibEFP interface

iSpiEFP: GUI and job manager

iSpiEFP: EFP workflow

molecular structure	main × md	Libefp Inp	ıt		
visualization auto fragmentation mar visualization of fragmented system	Title: Run Type: Format: Elec Damp: Disp Damp: Server:	lysine md xyzabc screen overlap test	Terms: Pol Damp Pol Solver:	elec, p ▼ tt ▼ iterative ▼	
preparing fragment parameters prepare EFP input	run_type md coord xyzabc terms elec pol disp s elec_damp screen pol_damp tt disp_damp overlap pol_driver iterative fraglib_path/fraglif ensemble nve time_step 1.0	c Download Input	Next		
visualization. animation. analy	vsis				

Lyudmila V. Slipchenko

EFP: full embedding

Fragmentation of covalent systems

automatic proteins, DNA, fatty acids

manual

user-defined fragmentation smart substructure search

EFP: full embedding

Fragmentation of covalent systems

Lyudmila V. Slipchenko

EFP: full embedding

EFPdb parameter database

MySQL database with fragment parameters

Fragment info

- name
- chemical formula
- smile string
- EFP terms

Lyudmila V. Slipchenko

- basis set used
- status (official / unofficial)
- structure (xyz format)
- parameters for each term

EFP: full embedding

Fragment search

search local directories

search EFPdb database

ID database

- Search is based on:
- 1. Chemical formula (ordered)
- 2. Connectivity map (distinguishing between structural isomers)
- 3. RMSD between atom positions

a list of fragments with user-defined tolerance on RMSD

visualization of all fragments in the list

selection of a fragment default: smallest RMSD

Lyudmila V. Slipchenko

Ji

Solute-solvent tete-a-tete

Solvatochromism = differential solvation of the ground and excited states of a chromophore Influence of solvent on properties of solute

Lyudmila V. Slipchenko

EFP: full embedding

QM / EFP

Lyudmila V. Slipchenko

Self-consistent polarization

Lyudmila V. Slipchenko

Polarization within HF cycle

Lyudmila V. Slipchenko

QM/EFP for the electronic excited states

Generally, each excited state has different electron density & charge distribution different response from environment statespecific perturbative treatment

Polarization correction to the excitation energy due to polarizable environment (using one-electron excited state density):

$$\Delta E^{\text{pol}} = E^{\text{pol,ai}}(\mu^{\text{ex}}) - E^{\text{pol,gr}}(\mu^{\text{gr}}) - \sum (\mu^{\text{ex}} - \mu^{\text{gr}})F^{\text{ai,ex}}$$

Thompson & Schenter, JPC 99, 6374 (1995)

leading correction to the interaction between μ^{ex} and Ψ^{ex}

Lyudmila V. Slipchenko

EFP: full embedding

Solvatochromism in para-nitroaniline

Para-nitroaniline (pNA) – a chromophore with bright lowlying charge-transfer state

Lyudmila V. Slipchenko

EFP: full embedding

Solvatochromic shifts in pNA

Lyudmila V. Slipchenko

EFP: full embedding

Vertical ionization energy of hydrated thymine

VIE of hydrated thymine

Lyudmila V. Slipchenko

EFP: full embedding

A closer look at solvatochromism

Lyudmila V. Slipchenko

EFP: full embedding

QM / EFP: toward full embedding

$$\hat{H}_{QM/EFP} = \hat{H}^{el} + \hat{H}^{pol} + \hat{H}^{disp} + \hat{H}^{exch-rep}$$

Smith, Ruedenberg, Gordon, Slipchenko, JCP 136, 244107 (2012);

Slipchenko, Ruedenberg, Gordon, JPCA 2017, 121, 9495–9507

Lyudmila V. Slipchenko

EFP: full embedding

Long-range perturbation theory

$$H^{0} = H^{A} + H^{B}$$

$$H' = \int \frac{\dot{\rho}^{A}(r)\dot{\rho}^{B}(r')}{4\pi\varepsilon_{0}|r-r'|} dr dr'$$

$$E^{0} = E^{A} + E^{B}$$

$$E' = \langle 00 | H' | 00 \rangle \quad \text{electrostatic energy}$$

$$F'' = -\sum \frac{\langle 00 | H' | mn \rangle \langle mn | H' | 00 \rangle}{E_{mn}^{0} - E^{0}}$$

$$E'' = -\sum \frac{\langle 00 | H' | mn \rangle \langle mn | H' | 00 \rangle}{E_{mn}^{0} - E^{0}}$$

$$E'' = -\sum \frac{\langle 00 | H' | mn \rangle \langle mn | H' | 00 \rangle}{E_{mn}^{0} - E^{0}}$$

$$E''_{mn} = -\sum_{m=0} \frac{\langle 00 | H' | mn \rangle \langle m0 | H' | 00 \rangle}{E_{m}^{A} - E^{A}}$$

$$E_{ind} = -\sum_{m=0} \frac{\langle 00 | H' | mn \rangle \langle mn | H' | 00 \rangle}{E_{m}^{A} - E^{A}}$$

$$E_{ind} = -\sum_{m=0} \frac{\langle 00 | H' | mn \rangle \langle mn | H' | 00 \rangle}{E_{m}^{A} - E^{A}}$$

$$E_{disp} = -\sum_{m=0} \frac{\langle 00 | H' | mn \rangle \langle mn | H' | 00 \rangle}{E_{m}^{A} - E_{m}^{B} - E^{B}}$$

Lyudmila V. Slipchenko

EFP: full embedding

Dispersion energy between EFP fragments

Applying multipole expansion to classical fragments A and B, the perturbation H' becomes:

$$H' = Tq^{A}q^{B} + T_{\alpha}(q^{A}\mu_{\alpha}^{B} - \mu_{\alpha}^{A}q^{B}) - T_{\alpha\beta}\mu_{\alpha}^{A}\mu_{\beta}^{B} + \cdots$$

T, T α and T $\alpha\beta$ are the electrostatic tensors of zero, first, and second rank

The leading term (C6):

$$E^{disp} = -\sum_{m,n\neq 0} T^{AB}_{\alpha\beta} T^{AB}_{\gamma\delta} \frac{\langle 0^A | \hat{\mu}^A_{\alpha} | m \rangle \langle m | \hat{\mu}^A_{\gamma} | 0^A \rangle \langle 0^B | \hat{\mu}^B_{\beta} | n \rangle \langle n | \hat{\mu}^B_{\delta} | 0^B \rangle}{E^A_{m0} + E^B_{n0}}$$
Introducing Casimir-Polder identity:

$$\frac{1}{A+B} = \frac{2}{\pi} \int_0^\infty \frac{AB}{(A^2 + \omega^2)(B^2 + \omega^2)} d\omega$$
and notation
dynamic pole

$$T_{\alpha\beta} = \nabla_{\beta} \nabla_{\alpha} \left(\frac{1}{R}\right) = \frac{3R_{\alpha}R_{\beta} - R^2\delta_{\alpha\beta}}{R^5} 2 \sum_m \frac{\omega_{m0}\langle 0 | \hat{\mu}_{\alpha} | m \rangle \langle m | \hat{\mu}_{\beta} | 0 \rangle}{\hbar(\omega^2_{m0} - \omega^2)}$$
Principal
fragment-fragment
energy

$$E^{disp}_6 = -\frac{\hbar}{2\pi} \sum_{\alpha\beta\gamma\delta}^{x,y,z} T^{AB}_{\alpha\beta} T^{AB}_{\gamma\delta} \int_0^\infty \alpha^A_{\alpha\gamma}(i\omega) \alpha^B_{\beta\delta}(i\omega) d\omega$$

Lyudmila V. Slipchenko

Approximations in EFP-EFP dispersion term

- Distributed polarizabilities (on LMOs):
- Isotropic and spherical-atom approximation for polarizabilities:
- EFP-EFP C6 coefficient computed using 12-point quadrature:
- Damping function using interfragment overlap integrals:
- 4/3 factor to account for higherorder terms

Amos et al, *J. Phys. Chem.* **1985**, *89*, 2186-2192; Adamovic & Gordon, *Mol. Phys.* **2005**, *103*, 379-387; Slipchenko and Gordon, Mol. Phys., 107, 999 (2009)

$$\alpha^{B}_{bd}(i\omega) \rightarrow \sum_{j \in B} \alpha^{j}_{bd}(i\omega)$$

 $\alpha_{ab}(i\omega) = \bar{\alpha}(i\omega)\delta_{ab}$

$$C_{6,kj} = \sum_{i=1}^{12} w_i \frac{2v_0}{(1-t_i)^2} \bar{\alpha}^k (i\omega) \bar{\alpha}^j (i\omega)$$

$$f_S^6 = 1 - S^2 (1 - 2\ln|S| + 2\ln^2|S|)$$

$$E_{EFP-EFP}^{disp} = -\frac{4}{3} \sum_{k \in A, j \in B} \frac{f_{kj}^{6} C_{kj}^{6}}{R_{kj}^{6}}$$

Lyudmila V. Slipchenko

EFP: full embedding

QM-EFP dispersion

Applying multipole expansion to classical fragment B, while A remains quantum, the perturbation H' is: $H' = \int T_{\alpha} \mu_{\alpha}^{B} \rho^{A}(r) dr$

$$E^{disp} = -\sum_{m,n\neq 0} \frac{\langle 0|T_{\alpha}\rho^{A}|m\rangle \langle m|T_{\beta}\rho^{A}|0\rangle \langle 0|\mu_{\alpha}^{B}|n\rangle \langle n|\mu_{\beta}^{B}|0\rangle}{E_{m0}^{A} + E_{n0}^{B}}$$

Again, using Casimir-Polder identity and gathering terms for dynamic polarizability tensor on fragment B:

$$E_{QM-EFP}^{disp} = -\frac{1}{\pi} \sum_{m \neq 0} \sum_{\alpha\beta}^{x,y,z} \langle 0|T_{\alpha}\rho^{A}|m\rangle \langle m|T_{\beta}\rho^{A}|0\rangle \int_{0}^{\infty} \frac{\omega_{m0}^{A}}{(\omega_{m0}^{A})^{2} + \omega^{2}} \alpha_{\alpha\beta}^{B}(i\omega)d\omega$$

Approximating the sum-over-state expression by the orbital-based summation, obtain the principal expression:

$$E_{QM-EFP}^{disp} = -\frac{1}{\pi} \sum_{j \in B} \sum_{k}^{occ} \sum_{r}^{vir} \sum_{\alpha\beta}^{x,y,z} \langle k | T_{\alpha} | r \rangle \langle r | T_{\beta} | k \rangle \int_{0}^{\infty} \frac{\omega_{rk}^{A}}{(\omega_{rk}^{A})^{2} + \omega^{2}} \alpha_{\alpha\beta}^{j}(i\omega) d\omega$$

Lyudmila V. Slipchenko

QM-EFP dispersion

- Distributed polarizability tensors (on fragments) are used
- Information from the QM subsystem: electric field integrals, orbital energies
- Additive correction to SCF energy of the QM-EFP system

Slipchenko, Ruedenberg, Gordon, *JPCA* 2017, 121, 9495–9507

Simple tests

R-R₀, Angstrom

Lyudmila V. Slipchenko

Favorite test: benzene dimer

R_{COM}, Angstrom

Lyudmila V. Slipchenko

EFP: full embedding

Benchmarking on S22 dataset

		QM-EFP			EFP-EFP	
	MSE	MUE	Rel. error	MSE	MUE	Rel. error
H-bonded	0.43	0.73	0.10	1.12	1.13	0.16
dispersion	0.87	1.08	0.13	-0.62	0.85	0.10
mixed	0.54	0.62	0.15	0.20	0.38	0.09
all	0.63	0.82	0.13	0.20	0.79	0.12

values in kcal/mol

QM-EFP and EFP-EFP dispersion terms perform similarly

Lyudmila V. Slipchenko

EFP: full embedding

Practical aspects of using QM/EFP dispersion

Dependence on QM basis set

Practical aspects of using QM/EFP dispersion

Dependence on DFT functional

Dispersion for the ground electronic state

vir OCC $\langle k | T_{\alpha} | r \rangle$ 000 vir

Lyudmila V. Slipchenko

EFP: full embedding

Suppose CIS formalism:
$$\Psi = \Phi_0 + \sum_{i,a}^{occ,virt} c_{ia} \Phi_i^a$$

Suppose CIS formalism:
$$\Psi = \Phi_0 + \sum_{i,a}^{occ,virt} c_{ia} \Phi_i^a$$

Suppose CIS formalism:
$$\Psi = \Phi_0 + \sum_{i,a}^{occ,virt} c_{ia} \Phi_i^a$$

Lyudmila V. Slipchenko

EFP: full embedding

Lyudmila V. Slipchenko

Does it work?

Dispersion energies, kcal/mol

	Ground	Triple	t state
	state	HF	CIS
Water dimer	-1.72	-2.94	-3.47
Ammonia dimer	-1.73	-3.58	-2.95
Ethene dimer	-2.03	-2.07	-1.89

Solvatochromism in pNA: revisited

QM/EFP: polarizable embedding + dispersion

QM/EFP dispersion in the ground state: -1.26 eV

eV	Excitation energy	Dispersion correction	Total energy
S ₂	5.26	-0.29	4.97
	$\rightarrow \pi^*$		Ryd

Repulsion between QM and EFP regions is a MUST!

pNA in small benzene cluster

CIS/6-31+G* //EFP

Lyudmila V. Slipchenko

EFP: full embedding

QM / EFP: toward full embedding

$$\hat{H}_{QM/EFP} = \hat{H}^{el} + \hat{H}^{pol} + \hat{H}^{disp} + \hat{H}^{exch-rep}$$
Annu. Rev. Phys. Chem., 64, 553-78 (2013);
Viquez-Rojas and
Slipchenko, *in prep*

Lyudmila V. Slipchenko

QM-EFP exchange-repulsion

$$E^{QM-EFP}(j) = \langle \Psi | \beta_j \exp\left(-\alpha_j (r-R_j)^2\right) | \Psi \rangle$$

- 3-center-1-electron integrals are computed
- Need a pair of parameters for each unique LMO
- Parameterization is done based on comparison to SAPT0 ex-rep and total energies and EFP ex-rep energies for molecular clusters extracted from hightemperature MD trajectories
- Exchange-repulsion in QM/EFP1 (EFP1: water potential) is done similarly

Viquez-Rojas, Fine, Slipchenko, submitted to JCP

Claudia Viquez-Rojas

Solvatochromism in pNA: revisited 2

Full-embedded QM/EFP

QM/EFP dispersion in the ground state: -1.22 eV

	eV	Excitation energy	Dispersion correction	Total energy	
	S ₂	5.35	-0.21	5.14	
	S ₈	7.97	-0.51	7.46	
~		→π*		Ryd	

Full-embedded QM/EFP provides qualitatively correct description of Rydberg states

pNA in small benzene cluster

CIS/6-31+G* //EFP

Lyudmila V. Slipchenko

EFP: full embedding

Full QM/EFP energies for S22 dataset

Viquez-Rojas, Fine, Slipchenko, submitted to JCP

Lyudmila V. Slipchenko

EFP: full embedding

Conclusions

- EFP is first-principles based polarizable force field
- *LIBEFP* is a stand-alone EFP implementation designed for interfacing with ab initio and dynamics software
- QM/EFP: full embedding scheme for describing electronic structure in heterogeneous environments
- Excited state dynamics?
 - Missing analytic gradients: state-specific polarization and excited state dispersion contribution. Can they be ignored?
 - Need QM dynamics driver. Limited possibilities exist in GAMESS, Q-Chem,... We are interested in collaborations!

Acknowledgements

\$\$\$: **NSF CTMC NSF SI2-SSI NSF AIR:TT**

Group members:

Dr. Danil Kaliakin Pradeep Gurunathan Yen Bui Yongbin Kim Claudia Viquez Rojas Nikita Dubinets Hanjjing Xu Jia Lin Cheoh **Ryan DeRue**

Group alumni: Dr. Carlos Borca Dr. Ilya Kaliman Dr. Dmytro Kosenkov Dr. Ben Nebgen Dr. Mandy Green Dr. Mike Hands Dr. Frank Emmert

Lyudmila V. Slipchenko

EFP: full embedding