Nonadiabatic Dynamics for Nanoscale Materials

Oleg Prezhdo U. Southern California

U Buffalo June 10, 2018

Ehrenfest Dynamics

Total energy of
electrons and nuclei
$$E_{tot} = \frac{MR}{2} + V(R(t)) + Tr_x \rho(x)H(x;R(t))$$

is conserved $\frac{dE_{tot}}{dt} = 0$

time-dependent Hellmann-Feynman theorem gives Newton equation

Why Surface Hopping Needed?

Average surface is not physical

Fewest Switches Surface Hopping

Tully, JCP 93, 1061 (1990)

Based on probability $|c_i|^2$

(becomes effectively Ehrenfest)

Fewest Switches

based on flux, d $|c_i|^2/dt$

Fewest Switches Surface Hopping Tully, JCP 93, 1061 (1990)

a.k.a., quantum-master equationwith time-dependent transition rates:non-perturbative

- correct short time dynamics

Trajectory branching: Tully, JCP **93**, 1061 (1990) Within TDDFT: Craig, Duncan, Prezhdo *PRL* **95**, 163001 (2005)

Detailed balance, due to hop rejection, needed for thermodynamic equilibrium: Parahdekar, Tully *JCP* **122**, 094102 (2005)

Time-Domain DFT for Nonadiabatic Molecular Dynamics

Craig, Duncan, Prezhdo Phys. Rev. Lett. 95, 163001 (2005)

Electron density derives from Kohn-Sham orbitals $\rho(x) = \sum_{p} |\varphi_{p}(x)|^{2} \qquad |\Psi\rangle = |\varphi_{p}(x_{1},t)\varphi_{q}(x_{2},t)\dots\varphi_{v}(x_{N},t)\rangle_{SD}$ DFT functional H depends on nuclear evolution R(t)Variational principle gives $i\hbar \frac{\partial \varphi_p(x,t)}{\partial t} = H\varphi_p(x,t) \quad p = 1,2...$ Orbitals are expanded in adiabatic KS basis $\varphi_p(x,t) = \sum c_p^{\alpha}(t)\chi^{\alpha}(x)$ $H(x;R(t))\chi^{\alpha}(x;R(t)) = \varepsilon^{\alpha}(R(t))\chi^{\alpha}(x;R(t))$ $i\hbar c^{\alpha} = \sum_{\beta} c^{\beta} \left(\varepsilon^{\beta} \delta_{\alpha\beta} - i\hbar \left\langle \chi^{\alpha} \left| \vec{\nabla}_{R} \right| \chi^{\beta} \right\rangle \cdot \vec{R} \right)$

Time-Domain Kohn-Sham Equations: Ehrenfest vs. Surface Hopping

- <u>Ehrenfest</u>: adiabatic KS basis can be viewed as *numerical representation* Stier, Prezhdo JPC-B 106 8047 (2002)
 main challenge evaluation of NA coupling
- <u>Surface Hopping</u>: requires definition of "states" for hopping; KS basis gives 0th order adiabatic states

Craig, Duncan, Prezhdo PRL 95, 163001 (2005)

Surface Hopping in Many-Body Kohn-Sham Basis

Craig, Duncan, Prezhdo *Phys. Rev. Lett.* **95,** 163001 (2005) Akimov, Prezhdo, *J. Theor. Comp. Chem.* **9**, 4959 (2013)

$$\begin{aligned} |\varphi_{a}\varphi_{b}\cdots\varphi_{p}\rangle &= \sum_{\substack{j\neq k\neq\cdots\neq l}}^{N_{e}} C_{j\cdots l}(t) |\tilde{\varphi}_{j}\tilde{\varphi}_{k}\cdots\tilde{\varphi}_{l}\rangle \\ i\hbar\frac{\partial}{\partial t}C_{q\cdots v}(t) &= \sum_{a\cdots p}^{N_{e}} C_{a\cdots p}(t) [E_{q\cdots v}\delta_{aq}\cdots\delta_{pv} \\ &+ \mathbf{D}_{a\cdots p;q\cdots r}\cdot\dot{\mathbf{R}}]. \end{aligned}$$
$$\mathbf{D}_{a\cdots p;q\cdots r}\cdot\dot{\mathbf{R}} = -i\hbar\langle\tilde{\varphi}_{a}\tilde{\varphi}_{b}\cdots\tilde{\varphi}_{p}|\frac{\partial}{\partial t}|\tilde{\varphi}_{q}\tilde{\varphi}_{r}\cdots\tilde{\varphi}_{v}\rangle \end{aligned}$$

D is non-zero only if different in one orbital, very sparse Multiple excitons in $Si_{29}H_{24}$: 25 VB and 24 CB orbitals **98,101 states** = ground+600SE+97,500DE

Hyeon-Deuk, Prezhdo Nano Lett. 11, 1845 (2011); ACS Nano 6, 1239 (2012)

JSC Why Surface Hopping in Kohn-Sham Representation Works

S. Fischer, B. Habenicht, A. Madrid, W. Duncan, O. V. Prezhdo, *J. Chem. Phys.* **134**, 024102 (2011)

- KS close to LR/TDDFT (in contrast to HF and CIS)
- No bond-breaking, conformational changes.
- Many-electrons, single excitation small perturbation
- Averaging over many initial conditions and pathways

1580

1600

Classical Path Approximation Useful for Nanoscale Systems

Prezhdo, Duncan, *Prog. Surf. Sci.* **84**, 30 (2009) Akimov, Prezhdo, *J. Theor. Comp. Chem.* **9**, 4959 (2013)

- 1. DFT functional (Hamiltonian) depends on ground state density, even though the true density does evolve
- 2. Ground and excited state nuclear trajectories are similar Justification:
- Excitation of 1 or 2 electrons out of hundreds does not change density and forces much
- 2. Thermal fluctuations are larger than differences in equilibrium geometries of ground and excited electronic states

<u>Key Advantages</u> – allows use of ground state trajectory, while still performing TDKS & SH for electronic state populations – electronic and nuclear timestep separation (1as & 1fs)

Theoretical Questions

Perspective: JPC Lett. 7 2100 (2016)

- How to couple quantum and classical dynamics? quantum back-reaction on classical variables
- Can one do better than classical mechanics for nuclear motion? zero-point motion, tunneling, branching, loss of coherence

nterference isappointing

LS-GFSH

Representation

Dependen

Decoherence induced surface hopping (DISH) *JCP* **137**, 22A545 (2012) Coherence penalty functional (CPF) *JCP* **140**, 194107 (2014)

Self-consistent FSSH (SC-FSSH) JPC-L 5, 713 (2014)

Global flux surface hopping (GFSH) *JCTC* **10**, 3598 (2014) Second quantized surface hopping (SQUASH) *PRL* **113**, 153003 (2014) FSSH in Liouville space *JPCL* **6**, 3827 (2015) GFSH in Liouville space, *JCP-Rapid* **143**, 191102 (2015)

Self-Consistent FSSH

Wang, Prezhdo J. Phys. Chem. Lett. 5, 713 (2014)

FSSH probability depends on NA coupling, which diverges

$$d_{ij}^{k} = \frac{\alpha p_{ki} p_{kj}}{E_j - E_i}$$

Linjun Wang pointed out that in FSSH sum of all hoping probabilities is

$$\sum_{i}^{N} g_{i} = \mathrm{d}t \cdot \frac{-\mathrm{d}(c_{a}^{*}c_{a})/\mathrm{d}t}{c_{a}^{*}c_{a}}$$

One tests if this is true (self-consistency).

Reaction coordinate

Obtains problematic probability

$$g_j = \sum_{i}^{N} g_i - \sum_{i \neq j}^{N} g_i$$

Self-Consistent FSSH

Wang, Prezhdo J. Phys. Chem. Lett. 5, 713 (2014)

FSSH: dt=0.1fs; SC-FSSH: dt=1fs 0.25 0.25 (A) Population of right-most site (B) N = 3; J = 5 meV0.20 0.20 dt [fs] 0.05 0.01 0.15 0.15 0.005 0.5 0.1 Ω 0.001 0.10 0.10 0.05 0.05 **FSSH SC-FSSH** 0.00 0.00 1000 400 800 200 200 600 400 600 800 1000 n 0 $H = H_{\rm e} + H_{\rm n}$ $H_{\rm n} = \frac{1}{2} \sum_{i} (Kx_i^2 + mv_i^2)$ N-1 $H_{\rm e} = \sum J(|i\rangle\langle i+1| + |i+1\rangle\langle i|) + \sum \alpha x_i |i\rangle\langle i|$ 3

Self-Consistent FSSH

Wang, Prezhdo J. Phys. Chem. Lett. 5, 713 (2014)

Auger Processes in Nanomaterials

Electron-hole energy exchange is a 2-particle process, has super-exchange channel

<u>Also</u>:

- Multiple-exciton generation and recombination
- Singlet fission (via intermediate charge transfer states)
- Auger-assisted electron transfer

Top channel is allowed by Schrodinger equation level, but forbidden in FSSH due to hop rejection

Global Flux Surface Hopping

Wang, Trivedi, Prezhdo, J. Theor. Comp. Chem. 10, 3598 (2014)

$$V_{11}(x) = 0, \quad V_{22}(x) = 0.01, \quad V_{33}(x) = 0.005$$
$$V_{12}(x) = V_{21}(x) = 0.001e^{-x^2/2}$$
$$V_{23}(x) = V_{32}(x) = 0.01e^{-x^2/2}$$
$$V_{13}(x) = V_{31}(x) = 0$$

Re-sum all fluxes

Then 1->2 and 2->3 cancel and 1->3 appears

k=4-7 super-exchange regime

Auger Electron-Hole Relaxation and Hole Trapping in CdSe QD

Trivedi, Wang, Prezhdo, Nano Lett. 15, 2086 (2015)

<u>Electron Relaxation</u> without trap 1.3 ps with trap 1.8 ps

Hole trapping 1.2 ps

Experiment: Sippel et al. Nano Lett. 13 1655 (2013)

- Hole is localized on surface, ligand tail not important
- Bottleneck not achieved: <u>hole trapping is too slow</u>, not because hole still couples to electron

FSSH underestimates rate by a factor of 4 in this case

 $\frac{\mathrm{d}}{\mathrm{d}t}|\rho\rangle\rangle = \frac{1}{i\hbar}\hat{L}|\rho\rangle\rangle$

FSSH in Liouville Space

L. Wang, A.E. Sifain, O.V.P. J Phys Chem Lett 6, 3827 (2015)

$$\frac{\mathrm{d}|\psi(t)\rangle}{\mathrm{d}t} = \frac{1}{i\hbar}\hat{H}|\psi(t)\rangle \qquad \hat{\rho}(t) = |\psi(t)\rangle\langle\psi(t)|$$
$$\frac{\mathrm{d}\hat{\rho}(t)}{\mathrm{d}t} = \frac{1}{i\hbar}[\hat{H},\hat{\rho}] \qquad |\rho\rangle\rangle = \sum_{ij}\rho_{ij}|ij\rangle\rangle$$

One trajectory at a time Normal FSSH

Questions for coherence states, $i \neq j$

• Energy: $E_{ij} = (E_{ii} + E_{jj})/2$, similar to quantum-classical Liouville

- Interpretation of trajectories on *ij*: assign half to *ii*, half to *jj*
- Direction of velocity rescaling for transition *ij→kl*: add NA coupling vectors NA_{ik}+NA_{jl}

FSSH in Liouville Space

L. Wang, A.E. Sifain, O.V.P. J Phys Chem Lett 6, 3827 (2015)

Dual avoided crossing

- FSSH in diabatic representation is better than adiabatic
- Big improvement in adiabatic using Liouville (better treatment of coherence)

FSSH & GFSH in Liouville Space

I L. Wang, A.E. Sifain, O.V.P. JCP-Rapid 143, 191102 (2015)

Super-exchange is obtained

USC Decoherence & Quantum Zeno Effect

O. V. Prezhdo, P. J. Rossky, *Phys. Rev. Lett.* 81, 5294 (1998)
O. V. Prezhdo, *Phys. Rev. Lett.* 85, 4413 (2000)

With decoherence: $P_{12} = |T_{12}|^2 + |T_{12}|^2 + ...$ Without decoherence $P_{12} = |T_{12} + T_{12} + ...|^2$ T_{12}

Decoherence makes transitions less likely $|0.1|^2 + |0.1|^2 < |0.1 + 0.1|^2$

• atom

Stochastic Mean-Field (decoherence gives branching) O. V. Prezhdo J. Chem. Phys. 111, 8366 (1999)

No ad hoc expressions for hopping probability

quantum Brownian motion

$$\frac{|d\Psi\rangle}{=-iH}\frac{|\Psi\rangle}{dt}\frac{-\gamma}{2}L^{+}L|\Psi\rangle}{dt}\frac{+\sqrt{\gamma}L}{\Psi}dW$$

friction noise

Decoherence Induced Surface Hopping (DISH)

Jaeger, Fisher, Prezhdo J. Chem. Phys. 137, 22A545 (2012)

Evolve in an adiabatic state. Hop when a decoherence event occurs. Use normal quantum probabilities. Rescale velocity as before in SH.

Advantages

- 1. Includes decoherence
- 2. Gives branching
- 3. Nuclear evolution in pure states

Corresponds to a piece-wise continuous stochastic Schrodinger equation

Coherence Penalty Functional

Akimov, Long, Prezhdo, J. Chem. Phys. 140, 194107 (2014)

- Retain computational efficiency of Ehrenfest no stochastic sampling: 1 trajectory, ordinary differential equations
- Penalize development of coherence

$$i\hbar \frac{\partial c_i(t)}{\partial t} = \sum_i \left[E_i(R(t)) \delta_{i,j} - i\hbar \frac{P}{M} d_{ij} \right] c_j(t) \qquad \begin{aligned} q_i &= \operatorname{Re}(c_i) \\ p_i &= \operatorname{Im}(c_i) \end{aligned}$$
$$H = \sum_i \frac{E_i}{2\hbar} \left(q_i^2 + p_i^2 \right) - \frac{P}{M} \sum_{i,j} d_{ij} p_i q_j \qquad \dot{p}_i = -\frac{\partial H}{\partial q_i} \quad \dot{q}_i = -\frac{\partial H}{\partial p_i} \end{aligned}$$

Coherence Penalty Functional

Akimov, Long, Prezhdo, J. Chem. Phys. 140, 194107 (2014)

- Retain computational efficiency of Ehrenfest no stochastic sampling: 1 trajectory, ordinary differential equations
- Penalize development of coherence

$$i\hbar \frac{\partial c_{i}(t)}{\partial t} = \sum_{i} \left[E_{i}(R(t)) \delta_{i,j} - i\hbar \frac{P}{M} d_{ij} \right] c_{j}(t) \qquad \begin{array}{l} q_{i} = \operatorname{Re}(c_{i}) \\ p_{i} = \operatorname{Im}(c_{i}) \end{array}$$

$$H = \sum_{i} \frac{E_{i}}{2\hbar} \left(q_{i}^{2} + p_{i}^{2} \right) - \frac{P}{M} \sum_{i,j} d_{ij} p_{i} q_{j} \qquad \dot{p}_{i} = -\frac{\partial H}{\partial q_{i}} \quad \dot{q}_{i} = -\frac{\partial H}{\partial p_{i}}$$

$$\tilde{H} = H + \sum_{\substack{i,j \\ i \neq j}} \lambda_{ij} \left(q_{i}^{2} + p_{i}^{2} \right) \left(q_{j}^{2} + p_{j}^{2} \right) \qquad \text{states with large coherence are energy maxima}$$

$$(q_{i}^{2} + p_{i}^{2})(q_{j}^{2} + p_{j}^{2}) = |c_{i}^{*}c_{j}|^{2} \qquad \text{coherence measure}}$$

Phonon Bottleneck in CdSe QD

Kilina, Neukirch, Habenicht, Kilin, Prezhdo, PRL 110, 180404 (2013)

PYXAID: PYthon eXtension of Ab Initio Dynamics

Akimov, Prezhdo, J. Theor. Comp. Chem. 9, 4959 (2013) ibid. 10, 789 (2014)

Python interfaced with Quantum Espresso, VASP

In DFTB+: Pal, Trivedi, Akimov, Aradi, Frauenheim, Prezhdo *JCTC* 12 1436 (2016) Fragment approach in Gamess: Negben, Prezhdo

JPC A 120 7205 (2016)

Overview of new methods Perspective Article in *JPC Lett.* **7** 2100 (2016)

Auger-assisted ET

Zhu, Yang, Hyeon-Deuk, Califano, Song, Wang, Zhang, Prezhdo, Lian, *Nano Lett.* **14**, 1263 (2014)

Why is there no Marcus inverted region? $k(r) \propto e$

0.7

0.8

0.9

10

∆G. eV

12

to traditional model

 $QY(\omega) = (\hbar\omega - E_{\rm B})^2 / (4E_{\rm F}\hbar\omega)$

Long, Fang, Prezhdo & co-workers Chem, accepted

Traditional mechanism holds

Coupling is weak:

- Plasmon-like excitations have no density on MoS₂
- MoS₂ is fully chemically saturated

Hot Luminescence in FAPbBr₃

X. Y. Zhu and co-workers, *Science* **353** 6306 (2016)

- Organic-inorganic perovskite luminesces at both low (>1ns) and high (200ps) energies
- Purely inorganic perovskite emits only at low energy
- Origin of high energy luminescence?

Hot Luminescence in FAPbBr₃

Long, Prezhdo & co-workers J. Am. Chem. Soc. 48 17327 (2017)

High energy: delocalized (free) carriers, larger coupling, faster decay *Low energy*: localized (polaron) carriers, smaller coupling, slower decay

Different "chromophores" can also arise from ion rich phases, electrically ordered phases, grain boundaries, defects, etc.

In Lieu of Conclusions

Nonadiabatic MD with TDDFT

- Classical path approximation for SH
- Self-consistent FSSH (trivial crossings)
- Global flux surface hopping
- Surface hopping in Liouville space
- Decoherence induced surface hopping
- Coherence penalty functional

Applications

- Phonon-bottleneck in QDs
- Auger assisted ET
- Plasmon-driven ET
- Hot luminescence in perovskites

