embedded Quantum ESPRESSO

Michele Pavanello @MikPavanello

Department of Chemistry Rutgers, the State University of New Jersey Newark, NJ

#QE2018

PRG @ Rutgers-Newark since 2012

PRG @ Rι

Work alongside

PRG @ Rı

- 3 postdocs
- 2 PhD students

PRG accepting PhD students!

- Work alongside
 - 3 postdocs
 - o 2 PhD students
- Work on

PRG @ Ri

- New ways to use TDDFT for molecule-surface interactions
- Nonadiabatic dynamics based on Constrained DFT
- Orbital-free DFT ...

PRG accepting PhD students!

- Work alongside
 - 3 postdocs
 - o 2 PhD students
- Work on

PRG @ Ri

- New ways to use TDDFT for molecule-surface interactions
- Nonadiabatic dynamics based on Constrained DFT
- Orbital-free DFT ... that actually works

Some theoretical aspects of embedding

Outline

Some theoretical aspects of embedding

Outline

Nature is made of interacting subsystems

Some theoretical aspects of embedding

Outline

- Nature is made of interacting subsystems
- Multiscale models of ground electronic states
 - Materials modeling: Periodic Subsystem DFT
 - embedded Quantum-ESPRESSO (eQE)
 - Dynamics of liquid, solvated and layered systems
 - Details of the eQE algorithm
 - Details of the eQE parallelization
- One example of excited states calculation

Krishtal, A.; Sinha, D.; Genova, A. & Pavanello, M.

Subsystem Density-Functional Theory as an Effective Tool for Modeling Ground and Excited States, their Dynamics, and Many-Body Interactions

J. Phys.: Condens. Matter, 27, 183202 (2015)

Split the system into (smaller) interacting subsystems

- Split the system into (smaller) interacting subsystems
- Partition of the total electron density into subsystem contributions

$$\rho(\mathbf{r}) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r}) \qquad \rho_I(\mathbf{r}) = \sum_i^\infty n_i^I |\phi_{(i)_I}(\mathbf{r})|^2$$

- Split the system into (smaller) interacting subsystems
- Partition of the total electron density into subsystem contributions

$$\rho(\mathbf{r}) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r}) \qquad \rho_I(\mathbf{r}) = \sum_i^\infty n_i^I |\phi_{(i)_I}(\mathbf{r})|^2$$

• The energy functional is almost additive: $E[\rho] \simeq E[\rho_I] + E[\rho_{II}]$

- Split the system into (smaller) interacting subsystems
- Partition of the total electron density into subsystem contributions

$$\rho(\mathbf{r}) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r}) \qquad \rho_I(\mathbf{r}) = \sum_i^\infty n_i^I |\phi_{(i)_I}(\mathbf{r})|^2$$

• The energy functional is almost additive: $E[\rho] \simeq E[\rho_I] + E[\rho_{II}]$

 $E_{\text{FDE}}[\rho] = E[\rho_I] + E[\rho_{II}] + T_s^{\text{nadd}}[\rho_I, \rho_{II}] + E_{xc}^{\text{nadd}}[\rho_I, \rho_{II}] + V_{\text{Coul}}^{\text{nadd}}[\rho_I, \rho_{II}]$

- Split the system into (smaller) interacting subsystems
- Partition of the total electron density into subsystem contributions

$$\rho(\mathbf{r}) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r}) \qquad \rho_I(\mathbf{r}) = \sum_i^\infty n_i^I |\phi_{(i)_I}(\mathbf{r})|^2$$

• The energy functional is almost additive: $E[\rho] \simeq E[\rho_I] + E[\rho_{II}]$

 $E_{\text{FDE}}[\rho] = E[\rho_I] + E[\rho_{II}] + T_s^{\text{nadd}}[\rho_I, \rho_{II}] + E_{xc}^{\text{nadd}}[\rho_I, \rho_{II}] + V_{\text{Coul}}^{\text{nadd}}[\rho_I, \rho_{II}]$

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

- Split the system into (smaller) interacting subsystems
- Partition of the total electron density into subsystem contributions

$$\rho(\mathbf{r}) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r}) \qquad \rho_I(\mathbf{r}) = \sum_i^\infty n_i^I |\phi_{(i)_I}(\mathbf{r})|^2$$

• The energy functional is almost additive: $E[\rho] \simeq E[\rho_I] + E[\rho_{II}]$

 $E_{\text{FDE}}[\rho] = E[\rho_I] + E[\rho_{II}] + T_s^{\text{nadd}}[\rho_I, \rho_{II}] + E_{xc}^{\text{nadd}}[\rho_I, \rho_{II}] + V_{\text{Coul}}^{\text{nadd}}[\rho_I, \rho_{II}]$

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

 Frozen Density Embedding (FDE): Coupled Kohn–Sham equations for each subsystem

$$\frac{\delta E_{\text{FDE}}[\rho_I + \rho_{II}]}{\delta \rho_I} = 0 \rightarrow \left[-\frac{1}{2} \nabla^2 + v_{KS}^I(\mathbf{r}) + v_{emb}^I(\mathbf{r}) \right] \phi_{(i)_I}(\mathbf{r}) = \varepsilon_i^I \phi_{(i)_I}(\mathbf{r})$$

The nonadditive functional for two subsystems

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

considering that $\rho(r) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r})$.

The nonadditive functional for two subsystems

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

considering that $\rho(r) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r})$.

Homework :)

- Compute $T_s^{nadd}[\rho_I, \rho_{II}]$ in the Thomas-Fermi approximation, $T_s[\rho] = C_{TF} \int \rho^{5/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_x^{nadd}[\rho_I, \rho_{II}]$ in the Dirac approximation, $E_x[\rho] = C_x \int \rho^{4/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_H^{nadd}[\rho_I, \rho_{II}], E_H[\rho] = \frac{1}{2} \int \int \rho(\mathbf{r}) \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$

The nonadditive functional for two subsystems

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

considering that $\rho(r) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r})$.

Homework :)

- Compute $T_s^{nadd}[\rho_I, \rho_{II}]$ in the Thomas-Fermi approximation, $T_s[\rho] = C_{TF} \int \rho^{5/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_x^{nadd}[\rho_I, \rho_{II}]$ in the Dirac approximation, $E_x[\rho] = C_x \int \rho^{4/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_H^{nadd}[\rho_I, \rho_{II}], E_H[\rho] = \frac{1}{2} \int \int \rho(\mathbf{r}) \frac{\rho(\mathbf{r}')}{|\mathbf{r} \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$

The embedding potential is given by $\frac{\delta E^{\text{nadd}}}{\delta \rho_l(\mathbf{r})}$.

The nonadditive functional for two subsystems

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

considering that $\rho(r) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r})$.

Homework :)

- Compute $T_s^{nadd}[\rho_I, \rho_{II}]$ in the Thomas-Fermi approximation, $T_s[\rho] = C_{TF} \int \rho^{5/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_x^{nadd}[\rho_I, \rho_{II}]$ in the Dirac approximation, $E_x[\rho] = C_x \int \rho^{4/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_H^{nadd}[\rho_I, \rho_{II}], E_H[\rho] = \frac{1}{2} \int \int \rho(\mathbf{r}) \frac{\rho(\mathbf{r}')}{|\mathbf{r} \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$

The embedding potential is given by $\frac{\delta E^{\text{nadd}}}{\delta \rho_l(\mathbf{r})}$.

...more homework!

- **T**_s contribution to $v_{emb}(\mathbf{r})$
- E_x contribution to $v_{emb}(\mathbf{r})$
- E_H contribution to $v_{emb}(\mathbf{r})$

Other types of embedding

Other types of embedding

Density-based embedding

Other types of embedding

Density-based embedding

Density Functional Embedding Theory [Carter] via KS inversion

- Density Functional Embedding Theory [Carter] via KS inversion
- Partition DFT [Wasserman] via KS inversion

- Density Functional Embedding Theory [Carter] via KS inversion
- Partition DFT [Wasserman] via KS inversion
- Potential Functional Embedding Theory [Carter] via OEP / KS inversion

- Density Functional Embedding Theory [Carter] via KS inversion
- Partition DFT [Wasserman] via KS inversion
- Potential Functional Embedding Theory [Carter] via OEP / KS inversion

Wavefunction, density matrix, and others

- Density Functional Embedding Theory [Carter] via KS inversion
- Partition DFT [Wasserman] via KS inversion
- Potential Functional Embedding Theory [Carter] via OEP / KS inversion

Wavefunction, density matrix, and others

■ WFT densities in DFT densities [Carter, Wesolowski, Neugebauer] $\rho_I(\mathbf{r}) = \langle \Psi_I | \hat{\rho}(\mathbf{r}) | \Psi_I \rangle$

- Density Functional Embedding Theory [Carter] via KS inversion
- Partition DFT [Wasserman] via KS inversion
- Potential Functional Embedding Theory [Carter] via OEP / KS inversion

Wavefunction, density matrix, and others

- WFT densities in DFT densities [Carter, Wesolowski, Neugebauer] $\rho_I(\mathbf{r}) = \langle \Psi_I | \hat{\rho}(\mathbf{r}) | \Psi_I \rangle$
- WFT density matrices in DFT density matrices [Manby, Miller, Goodpaster] $\gamma_I(\mathbf{r}, \mathbf{r}') = \langle \Psi_I^{HF} | \hat{\gamma}(\mathbf{r}, \mathbf{r}') | \Psi_I^{HF} \rangle$

eQE — embedded Quantum Espresso

eQE — embedded Quantum Espresso

eQE: An open-source density functional embedding theory code for the condensed phase International Journal of Quantum Chemistry, **117**, e25401 (2017)

eqe.rutgers.edu

eQE — embedded Quantum ESPRESSO

• Nested DIIS for $\{\rho_I(\mathbf{r})\}$

Michele Pavanello @MikPavanello

Embedding in PW

large comm

eQE — embedded Quantum ESPRESSO

Rewrite the MPI module of QE	BZ sampling (k-points)	
Subsystem-specific # of CPUs	 K-point sampling for (semi)conductors 	
wait for others to complete)	 Γ-point for 	
• Nested DIIS for $\{\rho_I(\mathbf{r})\}$	molecules/insulators.	

Regular QE

eQE

pros & cons

- distributed data communication
- non-polymorphic

distributed data communication

Michele Pavanello @MikPavanello

non-polymorphic

Embedding in PW

gathered data communication

eQE: a note on coding it

Michele Pavanello @MikPavanello Embedding in PW

30726 Å³

Speedup compared to regular QE (all PBE)

 $24.5 \times$

eQE vs QE: Parallel scaling for water 256

Water 256, 256 subsystems

QE-eQE gap widens with increasing # of CPUs

System relevant for catalysis:

How low can we go with *k*-points?

System relevant for catalysis:

How low can we go with *k*-points?

System relevant for catalysis:

How low can we go with *k*-points?

System relevant for catalysis:

Computational complexity [Genova & Pavanello JPCM (2015)]

Michele Pavanello @MikPavanello Embedding in PW

System relevant for catalysis:

Computational complexity [Genova & Pavanello JPCM (2015)]

	KS	FDE (bare)	FDE (optimized)
Speedup	$1.0 \times$	0.9 imes	6.2×
Time / Cycle (s)	195	220	31
# of Cycles	17	88	24

Michele Pavanello @MikPavanello

Water on Pt(100)

Water on Pt(100)

Water on Pt(100)

^aGenova, Ceresoli, & MP, J. Chem. Phys., 141, 174101 (2014)

■ Weak interations → OK

Water on Pt(100)

• Weak interations \rightarrow OK

■ Covalent bonds → Not OK

Water on Pt(100)

■ Weak interations → OK

- Covalent bonds → Not OK
- ... not until more accurate T_s[ρ] functionals are developed

Diffusion coefficient and dipole moment

$$\begin{array}{lll} \langle D\rangle & = & 2.97(0.4) \cdot 10^{-5} cm^2 s^{-1} \\ \langle \mu \rangle & = & 2.8(0.2)D \end{array}$$

Diffusion coefficient and dipole moment

$$\langle D \rangle = 2.97(0.4) \cdot 10^{-5} cm^2 s^{-1}$$

 $\langle \mu \rangle = 2.8(0.2)D$

- eQE recovers correct structure
- eQE recovers correct dynamics
- eQE recovers correct e⁻ structure

Diffusion coefficient and dipole moment

$$\langle D \rangle = 2.97(0.4) \cdot 10^{-5} cm^2 s^{-1}$$

 $\langle \mu \rangle = 2.8(0.2)D$

Optical Properties of Liquid Water: $\epsilon_1 \& \epsilon_2$

Optical Properties of Liquid Water: $\epsilon_1 \& \epsilon_2$

Computation of ε 14 10 snapshots of water 64 Average of 640 spectra

Kumar P., S. & Genova, A. & MP, J. Phys. Chem. Lett., 8 (20), pp 5077-5083 (2017)
Computation of *ϵ*10 snapshots of water 64 Average of 640 spectra Match experimental sum-rule in 0-25 eV window

Computation of ϵ

- 10 snapshots of water 64
- Average of 640 spectra
- Match experimental sum-rule in 0-25 eV window

We find...

- Overall good agreement across wide window of ω
- KS Exciton binding energy
 - \rightarrow KS gap \sim 7.0 eV
 - \rightarrow Optical gap \sim 6.4 eV

Computation of ϵ

- 10 snapshots of water 64
- Average of 640 spectra
- Match experimental sum-rule in 0-25 eV window

We find...

- Overall good agreement across wide window of ω
- KS Exciton binding energy
 - \rightarrow KS gap \sim 7.0 eV
 - \rightarrow Optical gap \sim 6.4 eV
- Index of refraction n = 1.68

Acknowledgments

Postdocs, Students & Collaborators

- Dr. Wenhui Mi
- Dr. Muhammed Acikgoz
- Pablo Ramos
- Alessandro Genova
- Rupali Chawla
- Sudheer Kumar P.
- Alina Umerbekova
- Johannes Tölle (visitor)

- Prof. Alisa Krishtal (@ NJIT)
- Dr. Debalina Sinha (@ L'Oreal)
- Dr. Davide Ceresoli (CNR)
- Prof. Oliviero Andreussi (North Texas)
- Dr. Andre Gomes (CNRS)
- Prof. Rob DiStasio (Cornell)
- Prof. Henk Eshuis (Montclair State)
- Dr. Damien Riedel (CNRS)

Funding

- ACS PRF
- NSF (CHE, DMR, CBET)
- DOE CTC

- ELF fund State of New Jersey
- AMSTERDAM DENSITY FUNCTIONAL