eQE: The embedded Quantum ESPRESSO software package

Michele Pavanello & friends

@MikPavanello

Department of Chemistry Rutgers, the State University of New Jersey Newark, NJ

MoISSI workshop at UB 2018

Pavanello Research Group @ Rutgers

Est. 2012

Embedding is the future present

Embedding is the future present

The playing field as I see it

- Moore's law forces us to go parallel
- (Super)computer architectures typically provide
 - Compute nodes (12-24 procs/node)
 - Infiniband
 - Coprocessors
- The cloud (probably the future)
 - Low on CPU, high on GPU
 - Google colaboratory / Google cloud: python + tensorflow
 - Not aware of any QC/CMT code tailored to AWS

Embedding is the future present

The playing field as I see it

- Moore's law forces us to go parallel
- (Super)computer architectures typically provide
 - Compute nodes (12-24 procs/node)
 - Infiniband
 - Coprocessors
- The cloud (probably the future)
 - Low on CPU, high on GPU
 - Google colaboratory / Google cloud: python + tensorflow
 - Not aware of any QC/CMT code tailored to AWS

The role of Embedding

- Naturally work-parallel
- In some formulations also data-parallel
- Embedding is a paradigm:
 - Can embed mathematical quantities (ρ , Ψ , G)
 - Can embed QC/CMT codes

Compute nodes

Compute nodes

The method should:

- Broadcast as little data as possible across compute nodes
- Avoid computing zeros
 - Simple and easy basis set truncation
- Approach excited states and *e⁻*−*N* dynamics

Split the system into (smaller) interacting subsystems

- Split the system into (smaller) interacting subsystems
- Partition of the total electron density into subsystem contributions

$$\rho(\mathbf{r}) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r}) \qquad \rho_I(\mathbf{r}) = \sum_i^\infty n_i^I |\phi_{(i)_I}(\mathbf{r})|^2$$

- Split the system into (smaller) interacting subsystems
- Partition of the total electron density into subsystem contributions

$$\rho(\mathbf{r}) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r}) \qquad \rho_I(\mathbf{r}) = \sum_i^\infty n_i^I |\phi_{(i)_I}(\mathbf{r})|^2$$

The energy functional is almost additive: $E[\rho] \simeq E[\rho_I] + E[\rho_{II}]$

- Split the system into (smaller) interacting subsystems
- Partition of the total electron density into subsystem contributions

$$\rho(\mathbf{r}) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r}) \qquad \rho_I(\mathbf{r}) = \sum_i^\infty n_i^I |\phi_{(i)_I}(\mathbf{r})|^2$$

The energy functional is almost additive: $E[\rho] \simeq E[\rho_I] + E[\rho_{II}]$

 $E_{\text{FDE}}[\rho] = E[\rho_I] + E[\rho_{II}] + T_s^{\text{nadd}}[\rho_I, \rho_{II}] + E_{xc}^{\text{nadd}}[\rho_I, \rho_{II}] + V_{\text{Coul}}^{\text{nadd}}[\rho_I, \rho_{II}]$

- Split the system into (smaller) interacting subsystems
- Partition of the total electron density into subsystem contributions

$$\rho(\mathbf{r}) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r}) \qquad \rho_I(\mathbf{r}) = \sum_i^\infty n_i^I |\phi_{(i)_I}(\mathbf{r})|^2$$

The energy functional is almost additive: $E[\rho] \simeq E[\rho_I] + E[\rho_{II}]$

 $E_{\text{FDE}}[\rho] = E[\rho_I] + E[\rho_{II}] + T_s^{\text{nadd}}[\rho_I, \rho_{II}] + E_{xc}^{\text{nadd}}[\rho_I, \rho_{II}] + V_{\text{Coul}}^{\text{nadd}}[\rho_I, \rho_{II}]$

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

- Split the system into (smaller) interacting subsystems
- Partition of the total electron density into subsystem contributions

$$\rho(\mathbf{r}) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r}) \qquad \rho_I(\mathbf{r}) = \sum_i^\infty n_i^I |\phi_{(i)_I}(\mathbf{r})|^2$$

The energy functional is almost additive: $E[\rho] \simeq E[\rho_I] + E[\rho_{II}]$

 $E_{\text{FDE}}[\rho] = E[\rho_I] + E[\rho_{II}] + T_s^{\text{nadd}}[\rho_I, \rho_{II}] + E_{xc}^{\text{nadd}}[\rho_I, \rho_{II}] + V_{\text{Coul}}^{\text{nadd}}[\rho_I, \rho_{II}]$

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

Frozen Density Embedding (FDE): Coupled Kohn–Sham equations for each subsystem

$$\frac{\delta E_{\text{FDE}}[\rho_I + \rho_{II}]}{\delta \rho_I} = 0 \rightarrow \left[-\frac{1}{2} \nabla^2 + v_{KS}^I(\mathbf{r}) + v_{emb}^I(\mathbf{r}) \right] \phi_{(i)_I}(\mathbf{r}) = \varepsilon_i^I \phi_{(i)_I}(\mathbf{r})$$

... a slide from 2018 QE workshop...

...a slide from 2018 QE workshop...

The nonadditive functional for two subsystems

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

considering that $\rho(r) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r})$.

...a slide from 2018 QE workshop...

The nonadditive functional for two subsystems

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

considering that $\rho(r) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r})$.

Homework :)

- Compute $T_s^{nadd}[\rho_I, \rho_{II}]$ in the Thomas-Fermi approximation, $T_s[\rho] = C_{TF} \int \rho^{5/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_x^{nadd}[\rho_I, \rho_{II}]$ in the Dirac approximation, $E_x[\rho] = C_x \int \rho^{4/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_H^{nadd}[\rho_I, \rho_{II}], E_H[\rho] = \frac{1}{2} \int \int \rho(\mathbf{r}) \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$

...a slide from 2018 QE workshop...

The nonadditive functional for two subsystems

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

considering that $\rho(r) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r})$.

Homework :)

- Compute $T_s^{nadd}[\rho_I, \rho_{II}]$ in the Thomas-Fermi approximation, $T_s[\rho] = C_{TF} \int \rho^{5/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_x^{nadd}[\rho_I, \rho_{II}]$ in the Dirac approximation, $E_x[\rho] = C_x \int \rho^{4/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_H^{nadd}[\rho_I, \rho_{II}], E_H[\rho] = \frac{1}{2} \int \int \rho(\mathbf{r}) \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$

The embedding potential is given by $\frac{\delta E^{\text{nadd}}}{\delta \rho_l(\mathbf{r})}$.

...a slide from 2018 QE workshop...

The nonadditive functional for two subsystems

$$F^{\text{nadd}}[\rho_I, \rho_{II}] = F[\rho] - F[\rho_I] - F[\rho_{II}]$$

considering that $\rho(r) = \rho_I(\mathbf{r}) + \rho_{II}(\mathbf{r})$.

Homework :)

- Compute $T_s^{nadd}[\rho_I, \rho_{II}]$ in the Thomas-Fermi approximation, $T_s[\rho] = C_{TF} \int \rho^{5/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_x^{nadd}[\rho_I, \rho_{II}]$ in the Dirac approximation, $E_x[\rho] = C_x \int \rho^{4/3}(\mathbf{r}) d\mathbf{r}$
- Compute $E_H^{nadd}[\rho_I, \rho_{II}], E_H[\rho] = \frac{1}{2} \int \int \rho(\mathbf{r}) \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$

The embedding potential is given by $\frac{\delta E^{\text{nadd}}}{\delta \rho_l(\mathbf{r})}$.

... more homework!

- **T**_s contribution to $v_{emb}(\mathbf{r})$
- E_x contribution to $v_{emb}(\mathbf{r})$
- E_H contribution to $v_{emb}(\mathbf{r})$

eqe.rutgers.edu

Michele Pavanello & friends @MikPavanello embedded Quantum-ESPRESSO

Rewrite the MPI module of QE	BZ sampling (k-points)
 Subsystem-specific # of CPUs Improved latencies (processes wait for others to complete) Nested DIIS for {ρ_l(r)} 	 K-point sampling for (semi)conductors. Γ-point for molecules/insulators.

Regular QE

pros & cons

- distributed data communication
- non-polymorphic

- distributed data communication
- non-polymorphic

Michele Pavanello & friends @MikPavanello embedded Quantum-ESPRESSO

gathered data communication

eQE: a note on coding it

Michele Pavanello & friends @MikPavanello embedded Quantum-ESPRESSO

eQE: An open-source density functional embedding theory code for the condensed phase International Journal of Quantum Chemistry, **117**, e25401 (2017)

$30726\,\text{\AA}^3$

Speedup compared to regular QE (all PBE)

 $24.5 \times$

eQE vs QE: Parallel scaling for water 256

Water 256, 256 subsystems

QE-eQE gap widens with increasing # of CPUs

Diffusion coefficient and dipole moment

$$\langle D \rangle = 2.97(0.4) \cdot 10^{-5} cm^2 s^{-1}$$

 $\langle \mu \rangle = 2.8(0.2)D$

Diffusion coefficient and dipole moment

$$\langle D \rangle = 2.97(0.4) \cdot 10^{-5} cm^2 s^{-1}$$

 $\langle \mu \rangle = 2.8(0.2)D$

- eQE recovers correct structureeQE recovers correct dynamics
- eQE recovers correct e⁻ structure

Diffusion coefficient and dipole moment

$$\langle D \rangle = 2.97(0.4) \cdot 10^{-5} cm^2 s^{-1}$$

 $\langle \mu \rangle = 2.8(0.2)D$

eQE recovers correct structure
eQE recovers correct dynamics
eQE recovers correct e⁻ structure
How about e⁻ excited states?

Subsystem TDDFT and Related Methods

- effective excitations of active subsystem in environment (leads to "FDEu") M.E. Casida, T.A. Wesolowski, Int. J. Quant. Chem. 96 (2004), 577; T.A. Wesolowski, JACS 126 (2004), 11444.
- general subsystem TDDFT formulation for delocalized excitations ("FDEc") J. Neugebauer, J. Chem. Phys. 126 (2007), 134116; J. Neugebauer, J. Chem. Phys. 131 (2009), 084104
- derivation with focus on subsystem response functions M. Pavanello, J. Chem. Phys. 138 (2013), 204118.
- fragment-based TDDFT in the context of partition DFT M.A. Mosquera, D. Jensen, A. Wasserman, *Phys. Rev. Lett.* 111 (2013), 023001.
- time-dependent potential-functional theory for subsystems
 C. Huang, F. Libisch, Q. Peng, E.A. Carter J. Chem. Phys. 140 (2014), 124113.
- real-time subsystem TDDFT

A. Krishtal, D. Ceresoli, M. Pavanello, J. Chem. Phys. 142 (2015), 154116.

subsystem TDDFT with external orthogonality

D.V. Chulhai, L. Jensen, Phys. Chem. Chem. Phys. 18 (2016), 21032.

$$\delta \rho(\mathbf{r},\omega) = \sum_{I} \delta \rho_{I}(\mathbf{r},\omega)$$
 Derives directly from $\rho(\mathbf{r}) = \sum_{I} \rho_{I}(\mathbf{r})$

$$\delta \rho(\mathbf{r}, \omega) = \sum_{I} \delta \rho_{I}(\mathbf{r}, \omega) \qquad \text{Derives directly from } \rho(\mathbf{r}) = \sum_{I} \rho_{I}(\mathbf{r})$$
$$\chi(\mathbf{r}, \mathbf{r}', \omega) = \sum_{I} \chi_{I}(\mathbf{r}, \mathbf{r}', \omega) \qquad \text{Spectrum is subsystem-additive ?!?}$$

$$\begin{split} \delta\rho(\mathbf{r},\omega) &= \sum_{I} \delta\rho_{I}(\mathbf{r},\omega) & \text{Derives directly from }\rho(\mathbf{r}) = \sum_{I} \rho_{I}(\mathbf{r}) \\ \chi(\mathbf{r},\mathbf{r}',\omega) &= \sum_{I} \chi_{I}(\mathbf{r},\mathbf{r}',\omega) & \text{Spectrum is subsystem-additive ?!?} \\ \chi_{I}^{u} &= \chi_{I}^{0} + \chi_{I}^{0} K_{II} \chi_{I}^{u} & \text{Uncoupled/Closed (FDE}_{u}) \end{split}$$

$$\begin{split} \delta\rho(\mathbf{r},\omega) &= \sum_{I} \delta\rho_{I}(\mathbf{r},\omega) & \text{Derives directly from } \rho(\mathbf{r}) = \sum_{I} \rho_{I}(\mathbf{r}) \\ \chi(\mathbf{r},\mathbf{r}',\omega) &= \sum_{I} \chi_{I}(\mathbf{r},\mathbf{r}',\omega) & \text{Spectrum is subsystem-additive ?!?} \\ \chi_{I}^{u} &= \chi_{I}^{0} + \chi_{I}^{0} K_{II} \chi_{I}^{u} & \text{Uncoupled/Closed (FDE}_{u}) \end{split}$$

 $\chi_I = \chi_I^u$

$$\begin{split} \delta\rho(\mathbf{r},\omega) &= \sum_{I} \delta\rho_{I}(\mathbf{r},\omega) & \text{Derives directly from }\rho(\mathbf{r}) = \sum_{I} \rho_{I}(\mathbf{r}) \\ \chi(\mathbf{r},\mathbf{r}',\omega) &= \sum_{I} \chi_{I}(\mathbf{r},\mathbf{r}',\omega) & \text{Spectrum is subsystem-additive ?!?} \\ \chi_{I}^{u} &= \chi_{I}^{0} + \chi_{I}^{0}K_{II}\chi_{I}^{u} & \text{Uncoupled/Closed (FDE}_{u}) \\ \chi_{I} &= \chi_{I}^{u} + \sum \chi_{I}^{u}K_{IJ}\chi_{J} & \text{Coupled/Open (FDE}_{c}) - \text{Holographic theory} \end{split}$$

The K_{IJ} coupling

 $J \neq I$

$$K_{IJ}(\mathbf{r}_1, \mathbf{r}_2, t - t') = \frac{\delta(t - t')}{|\mathbf{r}_1 - \mathbf{r}_2|} + \frac{\delta^2 E_{\rm xc}}{\delta\rho(\mathbf{r}_1, t)\delta\rho(\mathbf{r}_2, t')} + \frac{\delta^2 T_{\rm s}}{\delta\rho(\mathbf{r}_1, t)\delta\rho(\mathbf{r}_2, t')}$$

$$\begin{split} \delta\rho(\mathbf{r},\omega) &= \sum_{I} \delta\rho_{I}(\mathbf{r},\omega) & \text{Derives directly from } \rho(\mathbf{r}) = \sum_{I} \rho_{I}(\mathbf{r}) \\ \chi(\mathbf{r},\mathbf{r}',\omega) &= \sum_{I} \chi_{I}(\mathbf{r},\mathbf{r}',\omega) & \text{Spectrum is subsystem-additive ?!?} \\ \chi_{I}^{u} &= \chi_{I}^{0} + \chi_{I}^{0} K_{II} \chi_{I}^{u} & \text{Uncoupled/Closed (FDE}_{u}) \\ \chi_{I} &= \chi_{I}^{u} + \sum_{I} \chi_{I}^{u} K_{IJ} \chi_{J} & \text{Coupled/Open (FDE}_{c}) - \text{Holographic theory} \end{split}$$

The K_{IJ} coupling

 $J \neq I$

$$K_{U}(\mathbf{r}_{1},\mathbf{r}_{2},t-t') = \frac{\delta(t-t')}{|\mathbf{r}_{1}-\mathbf{r}_{2}|} + \frac{\delta^{2}E_{\mathrm{xc}}}{\delta\rho(\mathbf{r}_{1},t)\delta\rho(\mathbf{r}_{2},t')} + \frac{\delta^{2}T_{\mathrm{s}}}{\delta\rho(\mathbf{r}_{1},t)\delta\rho(\mathbf{r}_{2},t')}$$

Subsystem TDDFT is a general theory for open systems Let's apply it to liquid water!

Cooperation and Environment Characterize the Low-Lying Optical Spectrum of Liquid Water

J. Phys. Chem. Lett., 8 (20), pp 5077-5083 (2017)

Cooperation and Environment Characterize the Low-Lying Optical Spectrum of Liquid Water

J. Phys. Chem. Lett., 8 (20), pp 5077-5083 (2017)

Details of the calculation

Real-time subsystem TD-DFT, coded in eQE A. Krishtal, D. Ceresoli, M. Pavanello JCP 142, 154116 (2015)

Cooperation and Environment Characterize the Low-Lying Optical Spectrum of Liquid Water

J. Phys. Chem. Lett., 8 (20), pp 5077-5083 (2017)

Details of the calculation

- Real-time subsystem TD-DFT, coded in eQE
 A. Krishtal, D. Ceresoli, M. Pavanello JCP 142, 154116 (2015)
- Ultrasoft pseudopotentials
 X. Qian, J. Li, X. Lin, S. Yip PRB 73, 035408 (2006)

Cooperation and Environment Characterize the Low-Lying Optical Spectrum of Liquid Water

J. Phys. Chem. Lett., 8 (20), pp 5077-5083 (2017)

Details of the calculation

- Real-time subsystem TD-DFT, coded in eQE
 A. Krishtal, D. Ceresoli, M. Pavanello JCP 142, 154116 (2015)
- Ultrasoft pseudopotentials
 X. Qian, J. Li, X. Lin, S. Yip PRB 73, 035408 (2006)
- Reduce the # of Plane Waves by 80%
 A. Genova, D. Ceresoli, M. Pavanello JCP 144, 234105 (2016)

Cooperation and Environment Characterize the Low-Lying Optical Spectrum of Liquid Water

J. Phys. Chem. Lett., 8 (20), pp 5077-5083 (2017)

Details of the calculation

- Real-time subsystem TD-DFT, coded in eQE
 A. Krishtal, D. Ceresoli, M. Pavanello JCP 142, 154116 (2015)
- Ultrasoft pseudopotentials
 X. Qian, J. Li, X. Lin, S. Yip PRB 73, 035408 (2006)
- Reduce the # of Plane Waves by 80%
 A. Genova, D. Ceresoli, M. Pavanello JCP 144, 234105 (2016)
- Γ point for each water molecule

Computation of ϵ 10 snapshots of water 64 Average of 640 spectra Match experimental sum-rule in 0-25 eV window

Computation of ϵ

- 10 snapshots of water 64
- Average of 640 spectra
- Match experimental sum-rule in 0-25 eV window

We find...

- Overall good agreement across wide window of ω
- KS Exciton binding energy
 - \rightarrow KS gap \sim 7.0 eV
 - \rightarrow Optical gap \sim 6.4 eV

Kumar P., S. & Genova, A. & MP, J. Phys. Chem. Lett., 8 (20), pp 5077-5083 (2017)

Computation of ϵ

- 10 snapshots of water 64
- Average of 640 spectra
- Match experimental sum-rule in 0-25 eV window

We find...

- Overall good agreement across wide window of ω
- KS Exciton binding energy
 - \rightarrow KS gap \sim 7.0 eV
 - \rightarrow Optical gap \sim 6.4 eV
- Index of refraction n = 1.68

Kumar P., S. & Genova, A. & MP, J. Phys. Chem. Lett., 8 (20), pp 5077-5083 (2017)

Dielectric Constant - Many Body Effects

Michele Pavanello & friends @MikPavanello embedded Quantum-ESPRESSO

Dielectric Constant - Many Body Effects

 One Body (closed):

$$\chi = \sum_{I} \chi_{I}^{u}$$

Dielectric Constant – Many Body Effects

 One Body (closed):

$$\chi = \sum_{I} \chi_{I}^{u}$$

Many Body (open):

$$\chi = \sum_{I} \chi_{I}^{u} + \sum_{I \neq J} \chi_{I}^{u} K_{IJ} \chi_{J}$$

3 Many-body effects do not change first peak position

- 1 Oscillator strength enhanced in low-lying excitations
- 2 Oscillator strength depleted in high-lying excitations
- 3 Many-body effects do not change first peak position
- 4 Consistent with Galli's explanation for increased index of refraction with pressure^a

First Absorption Band of Liquid Water: ω_1

Role of the Environment: Urbach tail and ω_1 peak position

Michele Pavanello & friends @MikPavanello embedded Quantum-ESPRESSO

First Absorption Band of Liquid Water: ω_1

Role of the Environment: Urbach tail and ω_1 peak position

- Urbach tail entirely due to environment
- ω₁ and OH stretching do not correlate in the liquid
- Environment Order Parameter (EOP): Regression of 300+ descriptors
- Correlation of EOP to ω_1 is 0.65

Environment Order Parameter: Simplified depiction

Environment Order Parameter: Simplified depiction

Environment Order Parameter: Simplified depiction

What is "Environment Order Parameter" made of?

Accepted Hydrogen Bonds is the highest contribution to EOP

Environment Order Parameter: Simplified depiction

- Accepted Hydrogen Bonds is the highest contribution to EOP
- Distances and angles within the 1st solvation shell

Environment Order Parameter: Simplified depiction

- Accepted Hydrogen Bonds is the highest contribution to EOP
- Distances and angles within the 1st solvation shell
- Linear and Neural Network regressions lead to the same result

Environment Order Parameter: Simplified depiction

- Accepted Hydrogen Bonds is the highest contribution to EOP
- Distances and angles within the 1st solvation shell
- Linear and Neural Network regressions lead to the same result
- Same correlations between EOP and KS eigenvalue difference

Environment Order Parameter: Simplified depiction

What is "Environment Order Parameter" made of?

- Accepted Hydrogen Bonds is the highest contribution to EOP
- Distances and angles within the 1st solvation shell
- Linear and Neural Network regressions lead to the same result
- Same correlations between EOP and KS eigenvalue difference

... we have dissected liquid water...

Acknowledgments

Postdocs, Students & Collaborators

Current PRG members

Postdocs:

- Dr. Wenhui Mi
- Dr. Muhammed Acikgoz
- Dr. Pablo Ramos

Graduate Students:

- Rupali Chawla
- Alina Umerbekova
- Jack Maranhao

Funding:

- NSF CAREER
- DOE CTC

Alumni & Collaborators

Alumni:

- Johannes Tölle (Münster University)
- Dr. Alessandro Genova (@ Kitware)
- Prof. Alisa Krishtal (@ NJIT)
- Dr. Debalina Sinha (@ L'Oreal)

Collaborators:

- Dr. Davide Ceresoli (CNR)
- Prof. Rob DiStasio (Cornell)
- Dr. Andre Gomes (CNRS)
- Prof. Oliviero Andreussi (North Texas)
- Prof. Henk Eshuis (Montclair State)
- Dr. Damien Riedel (Paris Sud)