Electronic excitation in semiconductor nanoparticles: A real-space quasiparticle perspective

Mike Bayne and Ari Chakraborty
 Department of Chemistry
 Syracuse University

Overview of this talk

-Objective:

To describe electron-hole screening without using unoccupied states

-Motivation:

Calculation of unoccupied states are expensive. Judicious elimination of these states can lead to faster algorithm (e.g. WEST method by Galli et al.)

-Strategy:

Treating electron correlation in real-space representation by using explicitly correlated operators

-Chemical applications:

The developed method was used for calculations of optical gap and exciton binding energies

Charge-neutral excitation energy

- Matrix equation for excitation energies

$$
\left[\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\omega\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

-Electron-hole interaction kernel (Keh)

$$
A_{i a, j b}=\delta_{i j} \delta_{a b}\left(\epsilon_{a}-\epsilon_{i}\right)+K_{i a, j b}^{\mathrm{eh}} \quad B_{i a, j b}=K_{i a, j b}^{\mathrm{eh}}
$$

- Can be obtained using linear-response (LR-TDDFT), MBPT (BSE), equation-of-motion methods (EOM-CC, EOM-GF), CIS, ADC,...
- Two important considerations:
[1] Choice of 1-particles basis functions
[2] Choice for treating e-e correlation

Effective single-particle Hamiltonian

- Non-interaction system

$$
H_{0}=\sum_{i}^{N} h_{\mathrm{eff}}(i)
$$

$$
h_{\text {eff }}=\frac{-\hbar^{2}}{2 m} \nabla^{2}+v_{\text {ext }}+v_{\text {eff }}
$$

Can be:

$$
\begin{array}{rlrl}
v_{\mathrm{eff}} \in\left\{v_{\mathrm{HF}}, v_{\mathrm{KS}}, v_{\mathrm{MBPT}}, v_{\mathrm{Ps}}, v_{\text {model }}, \ldots\right\} & H=H_{0}+W \\
H_{0}|0\rangle & =E_{0}^{0}|0\rangle & H\left|\Psi_{0}\right\rangle & =E_{0}|0\rangle \\
H_{0}\left|\Phi_{i}^{a}\right\rangle & =E_{n}^{0}\left|\Phi_{i}^{a}\right\rangle & H\left|\Psi_{n}\right\rangle & =E_{n}\left|\Psi_{n}\right\rangle \\
\omega_{0 n}^{0} & =E_{n}^{0}-E_{0}^{0} & \omega_{0 n} & =E_{n}-E_{0}
\end{array}
$$

- Interacting system

$$
\begin{gathered}
W=V_{\mathrm{ee}}-\sum_{i}^{N} v_{\mathrm{eff}}(i) \\
W=\sum_{i<j}^{N} w(i, j)
\end{gathered}
$$

Goal of today's talk: $\omega_{0 n}=\omega_{0 n}^{0}+(?)+(?)+(?)$

- Intermediate normalization condition

$$
\left\langle 0 \mid \Psi_{0}\right\rangle=1 \quad\left\langle\Phi_{i}^{a} \mid \Psi_{n}\right\rangle=1
$$

- Electron-electron correlated is treated by operators that are local in real-space representation

$$
\begin{aligned}
& \langle\mathbf{x}| G_{0, n}\left|\mathbf{x}^{\prime}\right\rangle=G_{0, n}(\mathbf{x}) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \\
& \left|\Psi_{0}\right\rangle=G_{0}|0\rangle \quad\left|\Psi_{n}\right\rangle=G_{n}\left|\Phi_{i}^{a}\right\rangle
\end{aligned}
$$

- G is a two-body operator and is represented by a linear combination of Gaussian-type geminal functions

$$
G_{0, n}=\sum_{i<j}^{N} g_{0, n}(i, j) \quad g(1,2)=\sum_{k=1}^{N_{g}} b_{k} e^{-r_{12}^{2} / d_{k}^{2}}
$$

Definitions: Correlation operator

- Intermediate normalization condition

$$
\left\langle 0 \mid \Psi_{0}\right\rangle=1 \quad\left\langle\Phi_{i}^{a} \mid \Psi_{n}\right\rangle=1
$$

- Intermediate normalization condition

$$
\left\langle 0 \mid \Psi_{0}\right\rangle=1 \quad\left\langle\Phi_{i}^{a} \mid \Psi_{n}\right\rangle=1
$$

- Electron-electron correlated is treated by operators that are local in real-space representation

$$
\begin{gathered}
\left|\Psi_{0}\right\rangle=G_{0}|0\rangle \quad\left|\Psi_{n}\right\rangle=G_{n}\left|\Phi_{i}^{a}\right\rangle \\
\langle\mathbf{x}| G_{0, n}\left|\mathbf{x}^{\prime}\right\rangle=G_{0, n}(\mathbf{x}) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
\end{gathered}
$$

- Intermediate normalization condition

$$
\left\langle 0 \mid \Psi_{0}\right\rangle=1 \quad\left\langle\Phi_{i}^{a} \mid \Psi_{n}\right\rangle=1
$$

- Electron-electron correlated is treated by operators that are local in real-space representation

$$
\begin{gathered}
\left|\Psi_{0}\right\rangle=G_{0}|0\rangle \quad\left|\Psi_{n}\right\rangle=G_{n}\left|\Phi_{i}^{a}\right\rangle \\
\langle\mathbf{x}| G_{0, n}\left|\mathbf{x}^{\prime}\right\rangle=G_{0, n}(\mathbf{x}) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
\end{gathered}
$$

- G is a two-body operator and is represented by a linear combination of Gaussian-type geminal functions

$$
G_{0, n}=\sum_{i<j}^{N} g_{0, n}(i, j) \quad g(1,2)=\sum_{k=1}^{N_{g}} b_{k} e^{-r_{12}^{2} / d_{k}^{2}}
$$

See also: geminal correlator (Rassolov et al.), NEO-XCHF (Hammes-Schiffer et al.), geminal MCSCF (Varganov \& Martinez), trans-correlated Hamiltonian, Jastrow functions in VMC...

Connection to Configuration Interaction (CI)

Configuration interaction (CI): $\quad \Psi_{\mathrm{CI}}=\sum_{k}^{N_{\mathrm{CI}}} c_{k} \Phi_{k}$
$\left\{c_{k}\right\}$: finite number of independly optimizable coefficients

Explicitly correlated wave function:

$$
G \Phi_{0}=\sum_{k=0}^{\infty} \underbrace{\left|\Phi_{k}\right\rangle\left\langle\Phi_{k}\right|}_{1} G\left|\Phi_{0}\right\rangle=\sum_{k=0}^{\infty} \underbrace{\left\langle\Phi_{k}\right| G\left|\Phi_{0}\right\rangle}_{\substack{c_{k}^{\mathrm{G}} \\ \text { (must be a functional of G) }}}\left|\Phi_{k}\right\rangle
$$

$$
\Psi_{G}=G \Phi_{0}
$$

The explicitly correlated wave function is an infinite-order Cl expansion with constrained Cl coefficients

Electron-hole interaction kernel

- The excitation energies for the interacting and noninteracting system are related by the W operator

$$
\begin{aligned}
E_{n} & =\left\langle\Phi_{i}^{a}\right| H_{0}+W\left|\Psi_{n}\right\rangle \\
E_{0} & =\langle 0| H_{0}+W\left|\Psi_{0}\right\rangle \\
\omega_{0 n} & =\omega_{0 n}^{0}+\left\langle\Phi_{i}^{a}\right| W\left|\Psi_{n}\right\rangle-\langle 0| W\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Electron-hole interaction kernel

- The excitation energies for the interacting and noninteracting system are related by the W operator

$$
\begin{aligned}
E_{n} & =\left\langle\Phi_{i}^{a}\right| H_{0}+W\left|\Psi_{n}\right\rangle \\
E_{0} & =\langle 0| H_{0}+W\left|\Psi_{0}\right\rangle \\
\omega_{0 n} & =\omega_{0 n}^{0}+\left\langle\Phi_{i}^{a}\right| W\left|\Psi_{n}\right\rangle-\langle 0| W\left|\Psi_{0}\right\rangle
\end{aligned}
$$

- Expressing in terms of non-interacting states using (G)

$$
\omega_{0 n}=\omega_{0 n}^{0}+\left\langle\Phi_{i}^{a}\right| W G_{n}\left|\Phi_{i}^{a}\right\rangle-\langle 0| W G_{0}|0\rangle
$$

- The excitation energies for the interacting and noninteracting system are related by the W operator

$$
\begin{aligned}
E_{n} & =\left\langle\Phi_{i}^{a}\right| H_{0}+W\left|\Psi_{n}\right\rangle \\
E_{0} & =\langle 0| H_{0}+W\left|\Psi_{0}\right\rangle \\
\omega_{0 n} & =\omega_{0 n}^{0}+\left\langle\Phi_{i}^{a}\right| W\left|\Psi_{n}\right\rangle-\langle 0| W\left|\Psi_{0}\right\rangle
\end{aligned}
$$

- Expressing in terms of non-interacting states using (G)

$$
\omega_{0 n}=\omega_{0 n}^{0}+\left\langle\Phi_{i}^{a}\right| W G_{n}\left|\Phi_{i}^{a}\right\rangle-\langle 0| W G_{0}|0\rangle
$$

- Expressing in term of vacuum expectation value

$$
\omega_{0 n}=\omega_{0 n}^{0}+\langle 0|\left\{i^{\dagger} a\right\} W G_{n}\left\{a^{\dagger} i\right\}|0\rangle-\langle 0| W G_{0}|0\rangle
$$

Can be simplified using diagrammatic techniques

$\langle 0|\left\{i^{\dagger} a\right\} W G_{n}\left\{a^{\dagger} i\right\}|0\rangle$

- Only fully contracted terms have non-zero contribution to this term (Wick's theorem)
- The set of all resulting Hugenholtz diagrams, can be factored into sets of linked and unlinked diagrams
- Subset \#1: All linked diagrams (all vertices are connected)
- Subset \#2: All unlinked diagrams

$$
\langle 0|\left\{i^{\dagger} a\right\} W G_{n}\left\{a^{\dagger} i\right\}|0\rangle=\langle 0|\left\{i^{\dagger} a\right\} W G_{n}\left\{a^{\dagger} i\right\}|0\rangle_{L}+\langle 0| W G_{n}|0\rangle
$$

- Because (algebraically):

$$
\langle 0|\left\{i^{\dagger} a\right\}\left\{a^{\dagger} i\right\}|0\rangle=1
$$

$$
\langle 0|\left\{a^{\dagger} i\right\}|0\rangle=0 \quad \text { (normal ordered) }
$$

$\langle 0|\left\{i^{\dagger} a\right\} W G_{n}\left\{a^{\dagger} i\right\}|0\rangle$

- Only fully contracted terms have non-zero contribution to this term (Wick's theorem)
- The set of all resulting Hugenholtz diagrams, can be factored into sets of linked and unlinked diagrams
- Subset \#1: All linked diagrams (all vertices are connected)
- Subset \#2: All unlinked diagrams
- Unlinked diagrams in excited state are exactly canceled by the ground state contributions

$$
\langle 0|\left\{i^{\dagger} a\right\} W G_{n}\left\{a^{\dagger} i\right\}|0\rangle-\langle 0| W G_{n}|0\rangle=\langle 0|\left\{i^{\dagger} a\right\} W G_{n}\left\{a^{\dagger} i\right\}|0\rangle_{L}
$$

(Important point used in the next slide)

- Adding zero to the expression...

$$
\omega_{0 n}=\omega_{0 n}^{0}+\left[\langle 0|\left\{i^{\dagger} a\right\} W G_{n}\left\{a^{\dagger} i\right\}|0\rangle-\langle 0| W G_{n}|0\rangle\right]+\left[\langle 0| W G_{n}|0\rangle-\langle 0| W G_{0}|0\rangle\right]
$$

- Only linked terms contribute in the following expression

$$
\langle 0|\left\{i^{\dagger} a\right\} W G_{n}\left\{a^{\dagger} i\right\}|0\rangle-\langle 0| W G_{n}|0\rangle=\langle 0|\left\{i^{\dagger} a\right\} W G_{n}\left\{a^{\dagger} i\right\}|0\rangle_{L}
$$

- Expression for the excitation energy

Depends on particle-hole states

Depends only on occupied states

Generalized Hugenhotlz vertices

$$
W G_{n}=\left[\sum_{i<j}^{N} w(i, j)\right]\left[\sum_{i<j}^{N} g_{n}(i, j)\right]=\sum_{i<j}^{N} \theta_{n}(i, j)+\sum_{i<j}^{N} \theta_{n}(i, j, k)+\sum_{i<j<k<l}^{N} \theta_{n}(i, j, k, l)
$$

$$
W G_{n}=\Omega_{2}+\Omega_{3}+\Omega_{4}
$$

- Product of two two-body operators generates 2,3, and 4-body operators

from 2-body vertex $\left(\Omega_{2}\right)$

Contributing diagrams to the excitation energy

D_{22}

$+$

D_{23}
$+$

D_{24}
$+$

$+$

Contributing diagrams to the excitation energy
$\omega_{\mathrm{k}}=\omega_{\mathrm{k}}^{0}+$

$+$

$+$

$+$

Contributing diagrams to the excitation energy

Contributing diagrams to the excitation energy

- Contribution from different treatment of e-e correlation for ground and excited state wave function

$$
\begin{gathered}
\left|\Psi_{0}\right\rangle=G_{0}|0\rangle \quad\left|\Psi_{n}\right\rangle=G_{n}\left|\Phi_{i}^{a}\right\rangle \\
\langle 0| W\left(G_{n}-G_{0}\right)|0\rangle=\left\{D_{19}+D_{20}+D_{21}\right\}
\end{gathered}
$$

- Impacts excitation energy
- Does not impact electron-hole interaction kernel
- Is zero if $G_{n}=G_{0}$

Contributing diagrams to the excitation energy

- Effective 1-body (quasi) electron and hole operators
- Renormalizes quasiparticle energy levels due to e-e correlation
- Depends only on excited-state correlation operator G_{n}
- Impacts excitation energy
- Does not impact electron-hole interaction kernel

Contributing diagrams to the excitation energy

$$
K_{\mathrm{eh}}=
$$

- It is an 2-particle operator that simultaneous operate on both (quasi) electron and hole states
- The loops represent renormalization of 3- and 4-body operators as effective 2-body operators
- All diagrams contribute to the electron-hole interaction kernel
- Depends only on excited-state correlation operator G_{n}

$$
G_{n}=0 \rightarrow K_{\mathrm{eh}}=0
$$

(eh screening is a consequence of ee correlation)

Interpretation of the closed-loops diagrams

$$
K_{\mathrm{eh}}=
$$

- Closed-loops represent summation over occupied-state
- They represent effective 2-body operators generated from a 4-body operator by treating the additional coordinates at mean-field level

$$
K_{\mathrm{eh}}=
$$

- Closed-loops represent summation over occupied-state
- They represent effective 2-body operators generated from a 4-body operator by treating the additional coordinates at mean-field level
$W G_{n}=\left[\sum_{i<j}^{N} w(i, j)\right]\left[\sum_{i<j}^{N} g_{n}(i, j)\right]=\sum_{i<j}^{N} \theta_{n}(i, j)+\sum_{i<j}^{N} \theta_{n}(i, j, k)+\sum_{i<j<k<l}^{N} \theta_{n}(i, j, k, l)$

$$
\bigcirc=\frac{1}{4!} \sum_{i, j \in \mathrm{occ}}\left\langle\chi_{i}(3) \chi_{j}(4)\right| \theta_{n}(1,2,3,4)\left|\chi_{i}(3) \chi_{j}(4)\right\rangle_{A}
$$

$$
I=\sum_{\text {pqrs }} h_{\text {pqrs }}\langle 0| X_{1} X_{2} \ldots\left\{p^{\dagger} q^{\dagger} s r\right\} \ldots Y_{1} Y_{2}|0\rangle
$$

- Numerically zero mo integrals are

Many-to-one map eliminated

- Non-unique values are mapped to unique terms
- All non-zero \& unique mo integerals are assigned a unique id
- The unique id of the mo integrals are used to consolidate terms in the reduction step

Key point: Incorporating molecular integrals in the reduction step

Computer assisted Wick's contraction

- The strings of second quantized operators were evaluated using generalized Wick's theorem
$\langle 0|\left\{X_{1} X_{2} \ldots\right\}\left\{\ldots Y_{N-1} Y_{N}\right\}|0\rangle=\langle 0| X_{1} X_{2} \ldots Y_{N-1} Y_{N}|0\rangle \quad$ (fully contracted)
- Strategy\#1: All contractions are performed computationally
- Strategy\#2: Contractions are performed diagrammatically and the implementation is done computationally

Disadvantages:

- Source code is generated every time the mo integrals are updated (new system and change of basis)
- Can be impractical for large codes that have long compilation time

Advantages:

- The generated source code is optimized for the specific system
- Can reduce the overall memory footprint

Chemical application using first-order diagrams

Application to chemical systems

$$
\begin{gathered}
K_{\mathrm{eh}}^{(I)}=w(1,2) g(1,2)\left(1-P_{12}\right) \\
\text { approximations : }\left\{\begin{array}{c}
G_{n}=G_{0} \\
K_{\mathrm{eh}}^{(I I I I)}=U_{\mathrm{e}, \mathrm{~h}}^{(I I I I)}=0
\end{array}\right.
\end{gathered}
$$

- Excitation energies in small molecules and clusters

$\omega_{0 n}$ [this work] - $\omega_{0 n}$ [EOM-CCSD]		$\omega_{0 n}$ [this work] $-\omega_{0 n}[\mathrm{GW} / \mathrm{BSE}]$		
System	Energy difference in eV	System	Energ	ence in eV
Ne	0.06	$\mathrm{Cd}_{6} \mathrm{Se}_{6}$	0.04	(Ref. 1 \& 3)
$\mathrm{H}_{2} \mathrm{O}$	0.03	$\mathrm{Cd}_{20} \mathrm{Se}_{19}$	-0.04	(Ref. 2 \& 3)

Results from this work show reasonable agreement with many-body methods that use unoccupied states

1 Noguchi, Sugino, Nagaoka, Ishii, Ohno, JCP, 137, 024306 (2012)
2 Wang, Zunger, PRB, 53, 9579 (1996)
3 Bayne, Chakraborty, to be submitted (this work)

Determination of the Exciton Binding Energy in CdSe Quantum Dots

Robert W. Meulenberg, ${ }^{\text {+.s.* }}$ Jonathan R.I. Lee, ${ }^{+, *}$ Abraham Wolcott, ${ }^{\neq}$Jin Z. Zhang, ${ }^{\ddagger}$ Louis J. Terminello, ${ }^{+}$and Tony van Buuren ${ }^{+}$

VOL. 3 - NO. 2 - 325-330 - 2009 ACSN/ $\triangle N$

Size-Dependent Valence and Conduction Band-Edge Energies of Semiconductor Nanocrystals
Jacek Jasieniak, ${ }^{\text {t,* }}$ Marco Califano, ${ }^{\ddagger}$ and Scott E. Watkins ${ }^{\dagger}$

VoLume 78, NUMBER 5 PHYSICAL REVIEW LET TERS	3 FEBRUARY 1997
Direct Pseudopotential Calculation of Exciton Coulomb and Exchange Energies	
in Semiconductor Quantum Dots	
Alberto Franceschetti and Alex Zunger	
National Renewable Energy Laboratory, Golden, Colorado 80401	
(Received 23 August 1996)	

Exciton binding energies in CdSe quantum dots

$$
E_{\text {binding }}=\omega_{0 n}^{0}-\omega_{0 n}
$$

$\log [E x c i t o n$ binding energy/eV] vs log[Dot diamater/nm]

Exciton binding energies in CdSe quantum dots

$$
E_{\text {binding }}=\omega_{0 n}^{0}-\omega_{0 n}
$$

Summary

- It was shown that the electron-hole interaction kernel (ehkernel) can be expressed without using unoccupied states.
- The derivation was performed using a two-body correlation operator which is local in real-space representation.
- Using diagrammatic techniques, it was shown that the ehkernel can be expressed only in terms of linked-diagrams.
- The derived expression provides a route to make additional approximations to the eh-kernel
- The $1^{\text {st }}$ order approximation of eh-kernel was used for calculating electron-hole binding energies and excitation energies in atoms, molecules, clusters, and quantum dots.

Title here

Deformation potential: Which basis?

$$
\mathbf{h}^{\eta}=\mathbf{h}^{0}+\mathbf{v}_{\mathrm{def}}^{\eta}
$$

Space-filling basis functions

- Examples: plane-waves, real-space grid, distributed Guassian functions, Harmonic osc. basis, particle-in-box basis
- Both deformed and reference Hamiltonian use identical basis functions

Atom-centered basis functions

- Deformed and reference Hamiltonian use different basis functions
- We transform into the eigenbasis of the reference Hamiltonian

Transformation to ref. eigenbasis-I

- Step \#1: Get quantities from the converged SCF calculation on reference structure

$$
\mathbf{F}^{0} \mathbf{C}^{0}=\lambda^{0} \mathbf{S}^{0} \mathbf{C}^{0}
$$

- Step \#2: Perform symmetric or orthogonal transformation such that the S matrix is diagonal in that basis

$$
\begin{aligned}
& \mathbf{X}^{0+} \mathbf{S}^{0} \mathbf{X}=\mathbf{I} \quad \text { (single tilde transformation) } \\
& \mathbf{X}^{0} \mathbf{F}^{0} \mathbf{X}=\tilde{\mathbf{F}}^{0}
\end{aligned}
$$

- Step \#3: Find the U matrix that diagonalizes the transformed Fock matrix

$$
\tilde{\tilde{\mathbf{F}}}^{0} \equiv\left[\mathbf{U}^{0}\right]^{+} \tilde{\mathbf{F}}^{0} \mathbf{U}^{0}=\lambda^{0} \quad \text { (double tilde transformation) }
$$

- The U^{0} matrix is the matrix needed to transform operators in the eigenbasis of the reference structure

Transformation to ref. eigenbasis-II

- Step \#4: Get quantities from the converged SCF calculation on the deformed structure

$$
\mathbf{F}^{\eta} \mathbf{C}^{\eta}=\lambda^{\eta} \mathbf{S}^{\eta} \mathbf{C}^{\eta}
$$

- Step \#5: Perform orthogonal transformation

$$
\begin{aligned}
& \mathbf{X}^{0+} \mathbf{S}^{\eta} \mathbf{X}=\mathbf{I} \\
& \mathbf{X}^{0+} \mathbf{F}^{\eta} \mathbf{X}=\tilde{\mathbf{F}}^{\eta}
\end{aligned}
$$

- Step \#6: Transform the Fock in the eigenbasis of the reference Hamiltonian

$$
\tilde{\tilde{\mathbf{F}}}^{\eta}=\left[\mathbf{U}^{0}\right]^{+} \tilde{\mathbf{F}}^{\eta} \mathbf{U}^{0}
$$

- Step \#7: Calculate the deformation potential

$$
\mathbf{V}_{\text {def }}^{\eta}=\tilde{\tilde{\mathbf{F}}}^{\eta}-\tilde{\tilde{\mathbf{F}}}^{0}
$$

Info\#: Contributing diagrams to the excitation energy

$$
\begin{gathered}
\left(G_{n}-G_{0}\right)=\sum_{i<j}^{N} g_{n}(i, j)-g_{0}(i, j)=\sum_{i<j}^{N} \tilde{g}(i, j) \\
W\left(G_{n}-G_{0}\right)=\left[\sum_{i<j}^{N} w(i, j)\right]\left[\sum_{i<j}^{N} \tilde{g}(i, j)\right]=\sum_{i<j}^{N} \theta_{n}(i, j)+\sum_{i<j}^{N} \theta_{n}(i, j, k)+\sum_{i<j<k<l}^{N} \theta_{n}(i, j, k, l) \\
\langle 0| W\left(G_{n}-G_{0}\right)|0\rangle= \\
=\frac{1}{2} \sum_{i_{1} i_{2}}^{N}\left\langle i_{1} i_{2}\right| \theta_{2}\left(1-P_{12}\right)\left|i_{1} i_{2}\right\rangle \\
\\
+\frac{1}{3!} \sum_{i i_{i} i_{3}}^{N}\left\langle i_{1} i_{2} i_{3}\right| \theta_{3} \sum_{k=1}^{3!}(-1)^{p_{k}} \hat{P}_{k}\left|i_{1} i_{2} i_{3}\right\rangle \\
\\
+\frac{1}{4!} \sum_{i_{1} i_{2} i_{3} i_{4}}^{N}\left\langle i_{1} i_{2} i_{3} i_{3}\right| \theta_{4} \sum_{k=1}^{4!}(-1)^{p_{k}} \hat{P}_{k}\left|i_{1} i_{2} i_{3} i_{4}\right\rangle
\end{gathered}
$$

Info\#: Determination of geminal parameters

- For quantum dots, G was obtained from parabolic QD

$$
\begin{aligned}
& H_{\text {model }}=T_{e}+T_{h}+V_{e h}+V_{\text {harm }} \\
& \min _{G} \frac{\left\langle\chi_{e} \chi_{h}\right| G^{\dagger} H_{\text {model }} G\left|\chi_{e} \chi_{h}\right\rangle}{\left\langle\chi_{e} \chi_{h}\right| G^{\dagger} G\left|\chi_{e} \chi_{h}\right\rangle} \\
& G_{n} \simeq G_{\text {model }} \quad G_{0}=G_{n}
\end{aligned}
$$

- For small molecules and clusters, G was obtained varaitionally

$$
\begin{gathered}
\min _{G} \frac{\langle 0| G^{\dagger} H G|0\rangle}{\langle 0| G^{\dagger} G|0\rangle} \longmapsto G_{0} \\
G_{n}=G_{0}
\end{gathered}
$$

If we are ready to admit unoccupied states

Infinite-order diagrammatic summation approach to explicitly correlated congruent transformed Hamiltonian

Phys. Rev. A 89, 032515 (2014)
Mike Bayne, ${ }^{1}$ John Drogo, ${ }^{2}$ and Arindam Chakraborty ${ }^{1, *}$
Challenge: Avoiding 3, 4, 5, 6-particle integrals
$\begin{aligned} & \text { Step 1: Project the correlation } \\ & \text { function in a finite basis }\end{aligned} \quad E=\left\langle\Phi_{0}\right| G^{\dagger} H G\left|\Phi_{0}\right\rangle=\sum_{k k^{\prime}}^{M} G_{0 k} H_{k k^{\prime}} G_{k^{\prime} 0}$

Step 2: Write the energy expression term of diagrams

$$
E=\sum_{k k}^{M} D_{1}+D_{2}+\ldots+D_{36}
$$

$\begin{aligned} & \text { Step 3: Obtain a renormalized } \\ & \text { 2-body operator by performing }\end{aligned} \quad E=\underbrace{\lim _{M \rightarrow \infty} \sum_{k k}^{M} D_{1}+\ldots+D_{10}}_{g\left(r_{2}\right) r_{12}^{-1} g\left(r_{12}\right)}+\sum_{k k}^{M} D_{11}+\ldots+D_{36}$ infinite-order summation over

Partial infinite-order diagrammatic summation

$$
\begin{gathered}
E_{\mathrm{XCHF}}=\frac{\lim _{M \rightarrow \infty} \sum_{k}^{M} D_{k}}{\lim _{M \rightarrow \infty} \sum_{k}^{M} D_{k}} \quad \begin{array}{l}
\text { All diagrams are added to infinite } \\
\text { order }
\end{array} \\
E_{\text {PCTH-PIOs }}=\frac{\left[\lim _{M \rightarrow \infty} \sum_{k}^{M} D_{k}\right]+\sum_{k}^{M} D_{k}}{\left[\lim _{M \rightarrow \infty} \sum_{k}^{M} D_{k}\right]+\sum_{k}^{M} D_{k} \quad} \quad \begin{array}{l}
\text { Some diagrams are added } \\
\text { to infinite order }
\end{array} \\
E_{\text {PCTH }}=\frac{\sum_{k}^{M} D_{k}}{\sum_{k}^{M} D_{k}} \quad \text { All diagrams are added to finite order }
\end{gathered}
$$

Info\#: Summation over intermediate particle-hole states

Infinite-order diagrammatic summation approach to explicitly correlated congruent transformed Hamiltonian

Phys. Rev. A 89, 032515 (2014)
Mike Bayne, ${ }^{1}$ John Drogo, ${ }^{2}$ and Arindam Chakraborty ${ }^{1, *}$

Comparison of the three methods

Ground state energy of helium atom

3 Key Points

- FCl - multi-determinant minimization.
XCHF - single determinant minimization.
- XCHF gives lower energy than FCl for all the basis sets shown.
- XCHF converges much faster with respect to size 1-particle basis

Electron-hole Hamiltonian

$$
H=\underbrace{T_{\mathrm{e}}+V_{\mathrm{ee}}+V_{\mathrm{e}}^{\mathrm{ext}}}_{\text {electronic subsystem }}+\underbrace{T_{\mathrm{h}}+V_{\mathrm{hh}}+V_{\mathrm{h}}^{\mathrm{ext}}}_{\text {hole subsystem }}+\underbrace{V_{\mathrm{eh}}}_{\text {interaction term }}
$$

$H=H_{0}+V_{\mathrm{eh}} \quad \begin{aligned} & \text { Coulomb attraction term is responsible for electron-hole } \\ & \text { coupling }\end{aligned}$
-Configuration interaction (CI): Zunger, Efros,

This talk:
Explicitly correlated Hartree-Fock

Sundholm, Wang, Bester, Rabani, Franceschetti, Califano, Bittner, Hawrylak,...
-Many-body perturbation theory (MBPT): Baer, Neuhauser, Galli,...
-Quantum Monte Carlo method (QMC): Hybertsen, Shumway,...
-GW+BSE: Louie,Chelikowsky, Galli, Rohlfing , Rubio, ...
-All-electron TDDFT/DFT: Prezhdo, Tretiak, Kilina, Akimov, Ullrich, Li,....

