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Objective: 
To describe electron-hole screening without using 
unoccupied states

Motivation:
Calculation of unoccupied states are expensive. Judicious 
elimination of these states can lead to faster algorithm
(e.g. WEST method by Galli et al.)

Strategy:
Treating electron correlation in real-space representation 
by using explicitly correlated operators

Chemical applications:
The developed method was used for calculations of optical 
gap and exciton binding energies

Overview of this talk 



Charge-neutral excitation energy
 Matrix equation for excitation energies
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 Can be obtained using linear-response (LR-TDDFT), MBPT 
(BSE), equation-of-motion methods (EOM-CC, EOM-GF), CIS, 
ADC,…

Electron-hole interaction kernel (Keh)
eh
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 Two important considerations:
[1] Choice of 1-particles basis functions
[2] Choice for treating e-e correlation



Effective single-particle Hamiltonian
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 Non-interaction system  Interacting system
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Definitions: Correlation operator
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 Intermediate normalization condition

 Electron-electron correlated is treated by operators 
that are local in real-space representation

0, 0,| | ' ( ) ( ')n nG G δ〈 〉 = −x x x x x

 G is a two-body operator and is represented by a linear 
combination of Gaussian-type geminal functions
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Definitions: Correlation operator

0 0| | 0G=Ψ 〉 〉 | |n
a

n iGΨ 〉 Φ= 〉

0, 0, ( , )
N

n n
i j

g i jG
<

=∑ 2 2
12

1

/(1, 2)
g

kr d
N

k
k

g b e
=

−=∑

00 | 1〈 Ψ 〉 = 1| n
a
i〈Φ Ψ =〉

 Intermediate normalization condition

 Electron-electron correlated is treated by operators 
that are local in real-space representation

0, 0,| | ' ( ) ( ')n nG G δ〈 〉 = −x x x x x

 G is a two-body operator and is represented by a linear 
combination of Gaussian-type geminal functions

See also: geminal correlator (Rassolov et al.), NEO-XCHF (Hammes-Schiffer et al.), geminal
MCSCF (Varganov & Martinez), trans-correlated Hamiltonian, Jastrow functions in VMC…



Connection to Configuration Interaction (CI)
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The explicitly correlated wave function is an infinite-order CI 
expansion with constrained CI coefficients
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(must be a functional of G)



Electron-hole interaction kernel
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 The excitation energies for the interacting and non-
interacting system are related by the W operator



Electron-hole interaction kernel
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 The excitation energies for the interacting and non-
interacting system are related by the W operator

 Expressing in terms of non-interacting states using (G)



Electron-hole interaction kernel
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 The excitation energies for the interacting and non-
interacting system are related by the W operator

 Expressing in terms of non-interacting states using (G)

 Expressing in term of vacuum expectation value

Can be simplified using diagrammatic techniques



Contribution from the linked terms

 Subset #1: All linked diagrams (all vertices are connected)
 Subset #2: All unlinked diagrams

† †0 |{ } { }| 0nWG a ii a〈 〉
 Only fully contracted terms have non-zero contribution 

to this term (Wick’s theorem)

 The set of all resulting Hugenholtz diagrams, can be 
factored into sets of linked and unlinked diagrams

† † † †00 |{ } { }| 0 |{ } { }| 0 |0 | 0nn Lni a a i aWG ai WG i WG〈 〉 = 〈 〉 〈+ 〉

†0 |{ } | 0   (normal ord0 ered)ia〈 〉 =

 Because (algebraically): 
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Bayne, Chakraborty, JCTC, ASAP (2018)



Contribution from the linked terms

 Subset #1: All linked diagrams (all vertices are connected)
 Subset #2: All unlinked diagrams

† †0 |{ } { }| 0nWG a ii a〈 〉
 Only fully contracted terms have non-zero contribution 

to this term (Wick’s theorem)

 The set of all resulting Hugenholtz diagrams, can be 
factored into sets of linked and unlinked diagrams

 Unlinked diagrams in excited state are exactly canceled by 
the ground state contributions 
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(Important point used in the next slide)
Bayne, Chakraborty, JCTC, ASAP (2018)



Elimination of unlinked diagrams
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 Adding zero to the expression…

 Only linked terms contribute in the following expression

 Expression for the excitation energy

Depends on 
particle-hole 
states

Depends only on 
occupied states



Generalized Hugenhotlz vertices
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 Product of two two-body operators generates 2, 3, and 
4-body operators



Contributing diagrams to the excitation energy



Contributing diagrams to the excitation energy

Key result: 
Only connected diagrams contribute to the 
exciting energy and electron-hole interaction 
kernel

Bayne, Chakraborty, JCTC, ASAP (2018)



Contributing diagrams to the excitation energy

(effective 1-body)

e h,U U =

ehK =

(effective 2-body)



Contributing diagrams to the excitation energy

 Contribution from different treatment of e-e 
correlation for ground and excited state wave function
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 Impacts excitation energy

 Does not impact electron-hole interaction kernel

 Is zero if Gn = G0



Contributing diagrams to the excitation energy

 Effective 1-body (quasi) electron and hole operators

 Renormalizes quasiparticle energy levels due to e-e 
correlation

 Depends only on excited-state correlation operator Gn

 Impacts excitation energy

 Does not impact electron-hole interaction kernel

e h,U U =



Contributing diagrams to the excitation energy

 It is an 2-particle operator that  simultaneous operate 
on both (quasi) electron and hole states

 The loops represent renormalization of 3- and 4-body 
operators as effective 2-body operators

 All diagrams contribute to the electron-hole interaction 
kernel

 Depends only on excited-state correlation operator Gn

ehK =

eh0 0nG K= → =

(eh screening is a consequence of ee correlation)



Interpretation of the closed-loops diagrams

ehK =

 Closed-loops represent summation over occupied-state

 They represent effective 2-body operators generated 
from a 4-body operator by treating the additional 
coordinates at mean-field level
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 They represent effective 2-body operators generated 
from a 4-body operator by treating the additional 
coordinates at mean-field level
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Just-in-time (JIT) source code generation
† †

1 2 1 20 | { }... | 0
pqrs
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 Numerically zero mo integrals are 

eliminated

 Non-unique values are mapped to 
unique terms

 All non-zero & unique mo integerals
are assigned a unique id

 The unique id of the mo integrals are 
used to consolidate terms in the 
reduction step

Many-to-one map

Key point: Incorporating molecular integrals in the reduction step 



Computer assisted Wick’s contraction

 The strings of second quantized operators were evaluated using 
generalized Wick’s theorem

 Strategy#1: All contractions are performed computationally

 Strategy#2: Contractions are performed diagrammatically and 
the implementation is done computationally



Just-in-time (JIT) source code generation

Disadvantages:
 Source code is generated every time the mo integrals are updated 
(new system and change of basis)

 Can be impractical for large codes that have long compilation time

Advantages:

 The generated source code is optimized for the specific system

 Can reduce the overall memory footprint



Chemical application using first-order diagrams

Bayne, Chakraborty, JCTC, ASAP (2018)



Application to chemical systems
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System Energy difference in eV

Cd6Se6 0.04                  (Ref. 1 & 3)

Cd20Se19 -0.04                 (Ref. 2 & 3)
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 Excitation energies in small molecules and clusters

Results from this work show reasonable agreement with 
many-body methods that use unoccupied states

1 Noguchi, Sugino, Nagaoka, Ishii, Ohno, JCP, 137, 024306 (2012)
2 Wang, Zunger, PRB, 53, 9579 (1996)
3 Bayne, Chakraborty, to be submitted (this work) Bayne, Chakraborty, JCTC, ASAP (2018)



1st exciton 
level

Quasiparticle
energy gap

Optical absorption (OA) gap

Exciton binding (EBE) gap
Conduction band

Valence band

Exciton binding energies in CdSe clusters



Exciton binding energies in CdSe quantum dots
0

binding 0 0n nE ω ω= −



Exciton binding energies in CdSe quantum dots
0

binding 0 0n nE ω ω= −

experiment

This work

theory



Summary

 It was shown that the electron-hole interaction kernel (eh-
kernel) can be expressed without using unoccupied states.

 The derivation was performed using a two-body correlation 
operator which is local in real-space representation.

 Using diagrammatic techniques, it was shown that the eh-
kernel can be expressed only in terms of linked-diagrams. 

 The derived expression provides a route to make additional 
approximations to the eh-kernel

 The 1st order approximation of eh-kernel was used for 
calculating electron-hole binding energies and excitation 
energies in atoms, molecules, clusters, and quantum dots. 



Title here



Deformation potential: Which basis?
0

def
η η= +h h v

 Both deformed and reference Hamiltonian use identical basis functions

Space-filling basis functions

 Examples: plane-waves, real-space grid, distributed Guassian functions, 
Harmonic osc. basis, particle-in-box basis 

Atom-centered basis functions

 Deformed and reference Hamiltonian use different basis functions

 We transform into the eigenbasis of the reference Hamiltonian



Transformation to ref. eigenbasis-I

0 0 0 0 0= λF C S C
 Step #1: Get quantities from the converged SCF calculation on reference 

structure 

 Step #2: Perform symmetric or orthogonal transformation such that the S 
matrix is diagonal in that basis

0† 0

0† 0 0

=
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 Step #3: Find the U matrix that diagonalizes the transformed Fock matrix

0 0 † 0 0 0[ ]≡ =F F λU U

 

 The U0 matrix is the matrix needed to transform operators in the eigenbasis
of the reference structure

(single tilde transformation)

(double tilde transformation)



Transformation to ref. eigenbasis-II

η η η η η= λF C S C
 Step #4: Get quantities from the converged SCF calculation on the deformed 

structure 

0 † 0[ ]η η=F U F U

 

 Step #6: Transform the Fock in the eigenbasis of the reference Hamiltonian 
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η
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=

=
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 Step #5: Perform orthogonal transformation

 Step #7: Calculate the deformation potential
0

def
η η= −V F F 
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Info#: Contributing diagrams to the excitation energy
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Info#: Determination of geminal parameters

 For quantum dots, G was obtained from parabolic QD

model harme h ehH T T V V= + + +

 For small molecules and clusters, G was obtained 
varaitionally
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If we are ready to admit unoccupied states

Phys. Rev. A 89, 032515 (2014)

Challenge: Avoiding 3, 4, 5, 6-particle integrals

Step 1: Project the correlation 
function in a finite basis
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Step 3: Obtain a renormalized 
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Partial infinite-order diagrammatic summation 

PCTH-PIOS
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All diagrams are added to finite order

All diagrams are added to infinite 
order

Some diagrams are added 
to infinite order
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Info#: Summation over intermediate particle-hole states 

Phys. Rev. A 89, 032515 (2014)

=
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1. Elward, Hoja, Chakraborty Phys. Rev. A. 86, 062504 (2012)

Varganov and Martinez, JCP, 132, 054103 (2010) ; Xu and Jordan, JPCA, 114, 1365 (2010)  

• FCI - multi-determinant 
minimization.

XCHF - single determinant 
minimization.

• XCHF gives lower
energy than FCI for all 
the basis sets shown. 

• XCHF converges much 
faster with respect to size 

1-particle basis

3 Key Points

See also: Geminal augmented MCSCF for H2, QMC calculations on H2O

Ground state energy of helium atom 
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H T V V T V V V= + + + + + +
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0 ehH H V= +
•Configuration interaction  (CI): Zunger, Efros, 
Sundholm, Wang, Bester, Rabani, Franceschetti, 
Califano, Bittner, Hawrylak,…

•Many-body perturbation theory (MBPT): Baer, 
Neuhauser, Galli,...

•Quantum Monte Carlo method (QMC): Hybertsen, 
Shumway,… 

•GW+BSE: Louie,Chelikowsky, Galli, Rohlfing , Rubio, …

•All-electron TDDFT/DFT: Prezhdo, Tretiak, Kilina, 
Akimov,  Ullrich, Li,….

Coulomb attraction term is responsible for electron-hole 
coupling

This talk:
Explicitly correlated 
Hartree-Fock

Electron-hole Hamiltonian
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