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FIG. 1. (a) Schematic 3-D model of exciton-polariton transport
within an optical cavity. (b) Exciton-polariton band structure from
simulation and theory with no phonon coupling, (c) with phonon
coupling ω0/2, (d) with phonon coupling ω0, (e) with phonon cou-
pling 3ω0/2, where ω0 is the phonon coupling. The parameter
ω0 = 5.85→ 10→4 a.u. Further we use ! = 3900 cm→1, N = 40001,
ε = 0, ϑ0 = 2.58 eV, and ϖ0 = 3.2 eV.
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The angle-resolved optical spectra I(ϑ, k) can be obtained by
directly propagating the quantum dynamics to compute
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where |”(0)↓ = â
†
k|0̄↓ = |1k↓. Note that we have added the term

cos(ϱt/2T ) to suppress spurious Gibbs oscillations. Our numeri-
cal result, presented in Fig.1, illustrates the emergence of complex
vibronic structure in the momentum-resolved polaritonic spectra
in the presence of phonon modes. As can be seen in these fig-
ures, despite the absence of a strict translational symmetry, the
angle-resolved spectra suggest the existence of a quasi-dispersion
of polaron-polaritons. Such vibronic structure in exciton-polariton
bands has been seen in recent experiments [46, 47]. Below, we de-
rive the analytical forms of these quasi-bands with details provided
in the Supporting Information.
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Notice the similarity between Ĥpl(t) and the typical laser-matter
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where #Zn = Zn+1 ↗ Zn. To arrive at a simpler form
we further restrict our subspace such that Pi ⇒ S =

X̂

†
n

(B̂†)M+m
↘

(M+m)!
|0̄↓, â†k
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with M ⇐ ⇑. That is, here we

only consider the reference excitation block, the Mth block, of
the phonon field for states with a single photon. Further, we
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We develop an analytical microscopic theory to describe the polaron-polariton dispersion, formed
by hybridizing excitons, photons, and phonons, and their coherent dynamics inside optical cavities.
Starting from a microscopic light-matter Hamiltonian, we derive a simple analytical model by pur-
suing a non-perturbative treatment of the phonon and photon couplings to excitons. Within our
theoretical framework, the phonons are treated as classical fields that are then quantized via the
Floquet formalism. We show that, to a good approximation, the entire polaron-polariton system can
be described using a band picture despite the phonons breaking translational symmetry. Our theory
also sheds light on the long-lived coherent ballistic motion of exciton-polaritons with high excitonic
character that propagate with group velocities lower than is expected from pure exciton-polariton
bands, o!ering a microscopic explanation for these puzzling experimental observations.

Introduction. Coupling quantized electromagnetic radiation
to excitons forms exciton-polaritons (EPs), a hybrid photon-matter
quasi-particle [1–7], that demonstrates a wide range of exotic phe-
nomena [8–16], including enhanced transport surpassing the inher-
ent limits of bare-exciton transport [5, 17–22]. This extraordinary
phenomenon, namely cavity-enhanced exciton transport, demon-
strates the unique nature of exciton-polaritons, redefining the tra-
ditional paradigms of energy transport with possible applications
in quantum information science and chemical reactivity [5, 7, 23].

A superposition of neighboring exciton states in reciprocal space
leads to coherent ballistic propagation with a group velocity equal
to the slope of the band structure in the absence of dissipation [24].
Phonons, which are intrinsic to materials, break the translational
symmetry of an excitonic system, leading to phonon-induced de-
coherence and incoherent di!usive motion [25–28]. Therefore, it is
expected that the coherent ballistic motion of exciton-polaritons
will exhibit group velocities matching the exciton-polariton disper-
sion for times less than the decoherence lifetime [7, 29, 30]. Inter-
estingly, recent experiments [18, 19, 31, 32] indicate that exciton-
polaritons with significantly high excitonic character (up to →50%
excitonic) show long-lived coherent ballistic motion (up to hundreds
of femtoseconds) [17–19, 33] with group velocities lower than the
slopes of the exciton-polariton band structure [5, 18, 19, 32]. De-
spite many recent insightful theoretical works on exciton-polariton
dynamics [18, 34–40], including a recent inspiring work [37] fo-
cusing on the group velocity renormalization phenomena within a
perturbative framework, a full microscopic understanding of this
extraordinary phenomenon has remained elusive.

Here we introduce a new theoretical framework to understand
the complex polariton dispersion formed by hybridizing excitons,
photons, and phonons, as well as their coherent dynamics inside op-
tical cavities. Given the intractable nature of the full quantum me-
chanical problem, we introduce a convenient picture where exciton-
polaritons are embedded in a classical phonon field. We quantize
this phonon field using the Floquet formalism to derive an analyti-
cal model exhibiting translational symmetry to a good approxima-
tion, allowing for coherent motion. This analytical model produces
an extremely accurate description of exciton-polariton dispersion
when compared to the angle-resolved polariton spectra obtained
using a mixed quantum-classical approach [18, 34–37]. Using our
model, we show that the presence of phonons introduces vibronic
structure in the exciton-polariton dispersion, which we refer to as
the polaron-polariton dispersion. We show that this vibronic struc-
ture is responsible for a renormalization of the group velocity and
that despite a strong interaction with phonons, an e!ective band
structure model can be adopted. Our theory not only serves as a
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convenient analytical model to understand polariton spectra but
also provides new insights into the interplay between phonons and
exciton-polaritons.

Theory. We consider a generalized multimode Holstein-Tavis-
Cummings Hamiltonian [7, 8, 34, 41], which describes an exciton-
polariton system beyond the long-wavelength approximation, in-
teracting with phonons and is written as

ĤLM =
∑

n

X̂
†
nX̂nω0 +

∑
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â
†
kâkεc(k) +

∑
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+
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”k
↑
N

[
â
†
kX̂ne

↑ik·rn + âkX̂
†
ne

ik·rn
]
. (1)

Here X̂
†
n (â†k) creates an excitation (photon) at site n (mode k),

and Rn (Pn) is the position (momentum) operator for the nth
phonon mode. Here ω0 is the on-site energy with each site located
at rn = a ·n with a as the lattice constant, ϑ is the hopping param-
eter, ϖ is the exciton-phonon coupling, and ”k = ”

√
ε0/εc(k) is

the exciton-photon coupling. Finally, εc(k) and ε are the photon
and phonon frequency, respectively. Further details are provided
in the supporting information. Notably, the phonon degrees of
freedom break the translational symmetry of the exciton-polariton
system. Consequently, the polaron-polariton, formed through the
hybridization of excitons, photons, and phonons, is not expected
to exhibit a strict band structure. Nevertheless, we demonstrate
that a quasi-band structure framework can be employed, e!ectively
capturing the complex ballistic transport of exciton-polaritons.

Direct (analytical or numerical) quantum mechanical treatment
of this light-matter Hamiltonian is a formidable task given that po-
laritonic dispersion can only be obtained when using N → 105 sites
for experimentally relevant values of the lattice constant a (chosen
here to be 1.2 nm). To solve this intractable problem, we em-
ploy a mixed-quantum-classical approach, namely the mean-field
Ehrenfest (MFE) method [7, 42, 43], that is known to accurately
reproduce quantum vibronic structure in optical spectra in a single-
site exciton-phonon model [44, 45], despite the classical treatment
of phonons. Within this approach, the phonon modes are treated
classically, i.e. {R̂n, P̂n} ↓ {Rn, Pn}, while the photonic and ex-
citonic parts are propagated quantum mechanically using the po-
laritonic Hamiltonian Ĥpl(R) = ĤLM ↔

∑
n P

2
n/2. The equations

of motion in the MFE approach (in atomic units) are written as

i|#̇(t)↗ = Ĥpl(R)|#(t)↗, (2)

Ẍn(t) = Ṗn(t) = ↔

〈
#(t)

∣∣∣
dĤpl(R)

dRn

∣∣∣#(t)
〉
. (3)

The initial nuclear coordinates {Rn(0), Pn(0)} are sampled from
a Wigner distribution (see details in the Supporting Informa-
tion), and an expectation value of an operator Â is computed as
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eter, ϖ is the exciton-phonon coupling, and ”k = ”

√
ε0/εc(k) is

the exciton-photon coupling. Finally, εc(k) and ε are the photon
and phonon frequency, respectively. Further details are provided
in the supporting information. Notably, the phonon degrees of
freedom break the translational symmetry of the exciton-polariton
system. Consequently, the polaron-polariton, formed through the
hybridization of excitons, photons, and phonons, is not expected
to exhibit a strict band structure. Nevertheless, we demonstrate
that a quasi-band structure framework can be employed, e!ectively
capturing the complex ballistic transport of exciton-polaritons.

Direct (analytical or numerical) quantum mechanical treatment
of this light-matter Hamiltonian is a formidable task given that po-
laritonic dispersion can only be obtained when using N → 105 sites
for experimentally relevant values of the lattice constant a (chosen
here to be 1.2 nm). To solve this intractable problem, we em-
ploy a mixed-quantum-classical approach, namely the mean-field
Ehrenfest (MFE) method [7, 42, 43], that is known to accurately
reproduce quantum vibronic structure in optical spectra in a single-
site exciton-phonon model [44, 45], despite the classical treatment
of phonons. Within this approach, the phonon modes are treated
classically, i.e. {R̂n, P̂n} ↓ {Rn, Pn}, while the photonic and ex-
citonic parts are propagated quantum mechanically using the po-
laritonic Hamiltonian Ĥpl(R) = ĤLM ↔

∑
n P

2
n/2. The equations

of motion in the MFE approach (in atomic units) are written as

i|#̇(t)↗ = Ĥpl(R)|#(t)↗, (2)

Ẍn(t) = Ṗn(t) = ↔

〈
#(t)

∣∣∣
dĤpl(R)

dRn

∣∣∣#(t)
〉
. (3)

The initial nuclear coordinates {Rn(0), Pn(0)} are sampled from
a Wigner distribution (see details in the Supporting Informa-
tion), and an expectation value of an operator Â is computed as

2

exciton-phonon and exciton-cavity interactions. Here, the last term
Ĥloss describes cavity photon loss. The bare excitonic Hamiltonian
is written as

Ĥex =
N∑

n

M∑

m

[
ω0X̂

†
n,mX̂n,m → ε

(
X̂

†
n+1,mX̂n,m + h.c.

)]
, (2)

where X̂
†
n,m creates an exciton at the site n in the mth layer, ω0 is

the onsite energy and ε is the hopping parameter. These layers are
stacked parallel to each other with an interlayer spacing of ay = 4
nm, with each site separated laterally by a distance of a = 1.2
nm, which corresponds to typical perovskite materials [22]. In this
work, we also consider one phonon degree of freedom (DOF) per
site, with the bare phonon Hamiltonian given by

Ĥphn =
∑

n,m

(
p̂
2
n,m

2
+

1

2
ϑ
2
q̂
2
n,m

)
, (3)

where p̂n,m and q̂n,m are the momentum and position of the
phonons with frequency ϑ = 1440 cm→1 [22]. We consider a typical
form of the exciton-phonon coupling [2, 23–25] described by

Ĥex→phn = ϖ

∑

n,m

q̂n,mX̂
†
n,mX̂n,m, (4)

where ϖ is the exciton-phonon coupling strength. The bare cavity
Hamiltonian Ĥcav describes a set of confined radiation modes in a
Fabry-Pérot optical cavity [7, 26–28] such that

Ĥcav =
∑

k

ϑkâ
†
kâk , (5)

where â
†
k creates a photon of wavevector k with a frequency ϑk =

c

ω
|k| where c and ϱ = 2.4 are the speed of light and the refractive

index, respectively. In this work, we consider only two directions,
i.e. x and y such that k = kxςx+ kyςy with y as the cavity quanti-
zation direction. Similar to recent work [2, 9, 15, 20, 24, 29, 30] we
impose a periodic boundary condition in the x direction, e!ectively

quantizing the kx =
2εny

N·a where nx = 0,±1,±2, ... and consider
primary cavity mode along the y direction such that ky = ε

L
with

L = 1000 Å as the distance between the two reflective mirrors of
the optical cavity. To simplify our notation, we denote k = kx

and label all photonic operators and related parameters with k,

as ky is fixed, such that Ĥcav =
∑

k ϑkâ
†
kâk ↑

∑
k
ϑkâ

†
k
âk and

ϑk = c

ω

√
k2y + k2.

The light-matter interactions beyond the long-wavelength ap-
proximation [2, 24, 30, 31] is described by the Ĥex-cav as

Ĥex-cav =
∑

n,m,k

”k↓
N

(
X̂

†
n,mâke

ikxn + h.c.

)
sin(ky · ym) , (6)

where ”k =
√

ϑ0
ϑk

”0 (”0 = 480 meV chosen here) is the light-

matter coupling strength with the spatial location of the exciton

X̂
†
n,m as Rn,m = xnςx+ ymςy. Finally, we model the cavity photon

loss using a non-Hermitian Hamiltonian [20, 32–34]

Ĥloss = →
i

2tc

∑

k

â
†
k
âk , (7)

where tc is the cavity photon lifetime.
Quantum Dynamical Approach. In this work, we employ a

custom mixed-quantum-classical method based on the mean-field
Ehrenfest approach to simulate the dynamics of the light-matter
hybrid system. Within the standard Ehrenfest approach, that has
been extensively used to simulate non-adiabatic dynamics of polari-
tons, [7, 9, 10, 20, 35–38] the nuclear (or slow) degree of freedom
is evolved classically, with {q̂n,m, p̂n,m} ↑ {qn,m, pn,m}, following
the Hamiltonian’s equation of motion,

ṗn,m(t) = →
〈
#(t)

∣∣∣
dĤLM

dqn,m

∣∣∣#(t)
〉
, q̇n,m(t) = pn,m(t), (8)

where |#(t)↔ is the excitonic-photonic wavefunction at time t.
The excitonic-photonic wavefunction is evolved using the time-
dependent Schrödinger equation written as

i|#̇(t)↔ =
[
ĤLM →

1

2

∑

n

P
2
n

2

]
|#(t)↔. (9)

In this work, we confine the exciton-polariton dynamics to the sin-
gle excited subspace, such that

|#(t)↔ =
(∑

k

ck(t)â
†
k
+

∑

n,m

bn,m(t)X̂†
n,m

)
|0̄↔ (10)

↗
∑

k

ck(t)|1k↔+
∑

n,m

bn,m(t)|n,m↔ (11)

where ck(t) and bn,m(t) are time-dependent coe$cients. In the
second line, we have introduced the compact representation |1k↔ ↗
â
†
k
|0̄↔ and |n,m↔ ↗ X̂

†
n,m|0̄↔, with |0̄↔ as the ground (or vacuum)

state of the system, for simplicity. Despite the mixed quantum-
classical treatment of the full light-matter Hamiltonian, numeri-
cally solving Eq. 9 is extremely challenging as the present work
requires a basis of size ↘ 106. To resolve this issue, we develop
a split-operator approach where a short-time (a single time-step)
propagation of |#(t)↔ is obtained as

|#(t+ φt)↔ = e
→iĤLMϖt|#(t)↔ (12)

≃ ÛftÛB

(
Û

†
BÛ

†
fte

→iĤEPϖt
ÛftÛB

)
Û

†
BÛ

†
fte

→iĤenvϖt|#(t)↔

= ÛftÛB · e→i(Û†
BÛ

†
ftĤEPÛftÛB)ϖt · Û†

BÛ
†
ft · e

→iĤenvϖt|#(t)↔,

where ĤLM = ĤEP + Ĥenv with Ĥenv = Ĥphn + Ĥex→phn + Ĥloss

and ĤEP = Ĥex+Ĥcav+Ĥex-cav. Here Ĥenv is the diagonal in the
exciton-photon basis {|1k↔, |n,m↔} chosen here. As a result, the ac-

tion of the matrix e
→iĤenvϖt on the vector |#(t)↔ reduces to a simple

Hadamard product between a vector containing the diagonal ele-

ments of e→iĤenvϖt and |#(t)↔. Meanwhile, Û†
ft is a unitary operator

that Fourier transforms the excitonic subspace within each layer,

such that Û
†
ft|#(t)↔ =

∑
k
ck(t)|1k↔ + Û

†
ft

∑
n,m

bn,m(t)|n,m↔ =∑
k
ck(t)|1k↔+

∑
k,m

bk,m(t)|k,m↔. We perform this Fourier trans-

formation using the Fast Fourier Transformation (FFT) algorithm,
which scales as N logN resulting in a significant reduction of the
computation cost [29, 39, 40]. Importantly, here we introduce the
unitary operator ÛB = Ûdb · ÛD, where Ûdb transforms the ex-
citonic subspace into a dark-bright layers subspace [15] and ÛD

diagonalizes this transformed exciton-polariton Hamiltonian,

Û
†
BÛ

†
ftĤEPÛftÛB = Û

†
B

[
Û

†
ft(Ĥex + Ĥex-cav)Ûft + Ĥcav


ÛB (13)

= Û
†
D

∑

k

[
ωkX̂

†
k,b

X̂k,b +
↓
S”k

(
X̂

†
k,b

âk + h.c.

)

+ ϑkâ
†
k
âk

]
ÛD +

∑

k,d

ωkX̂
†
k,d

X̂k,d

=
∑

k,i↑{±}
ϑk,iP̂

†
k,i

P̂k,i +
∑

k,d

ωkX̂
†
k,d

X̂k,d (14)

where X̂
†
k,b

= 1↓
S
∑

m
sin(k · ym)X̂†

k,m
are bright layer exciton

operators, with the normalization constant S =
∑

m
sin2(k · ym).

Here, X̂
†
k,b

creates an exciton delocalized over all layers with an

in-plane wavevector k. On the other hand, X̂†
k,d

=
∑

m
sm,dX̂

†
k,m

,

with
∑

m
s
2
m,d

= 1 and
∑

m
sm,d · sin(k · ym) = 0, are dark layers

exciton operators that do not couple to cavity radiation modes.
These dark exciton operators form dark exciton bands, which are
illustrated in Fig. 1d. In the last line of Eq. 13, we have introduced
the upper and lower polariton operators,

P̂
†
k,+ = sin ↼k · â†

k
+ cos ↼k · X̂†

k,b
(15)

P̂
†
k,→ = cos ↼k · â†

k
→ sin ↼k · X̂†

k,b
(16)
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S1 Details of the Quantum Dynamics Approach
We considered a light-matter Hamiltonian beyond long-wavelength approximation and with Holstein exciton-phonon coupling. This
Hamiltonian for N sites and M layers is given by

ĤEP =
∑

k

ωkX̂
†
k
X̂k + !k

(
X̂

†
k
âk +Xkâ

†
k

)
+ εkâ

†
k
âk =

∑

k

ĤEP(k)

Rn(t) → Rn(0) cosεt+
1

ε
Pn(0) sinεt. (S1)

ĤLM = Ĥex + Ĥphn + Ĥcav + Ĥex→phn + Ĥex-cav + Ĥloss (S2)

Where Ĥex, Ĥphn, and Ĥcav indicate the bare exciton, phonon, and cavity terms of Hamiltonian respectively,

Ĥex =
N∑

n

M∑

m

[
ω0X̂

†
n,m

X̂n,m ↑ ϑ

(
X̂

†
n+1,mX̂n,m + h.c.

)]
, Ĥphn =

∑

n,m

(
p̂
2
n,m

2
+

1

2
ε
2
q̂
2
n,m

)
, Ĥcav =

∑

k

εkâ
†
kâk (S3)

and Hex-phn and Hex-cav represents exciton-phonon and exciton-photon coupling terms, respectively

Ĥex→phn = ϖ

∑

n,m

q̂n,mX̂
†
n,m

X̂n,m, Ĥex-cav =
∑

n,m,k

!k↓
N

(
X̂

†
n,m

âke
ikxn + h.c.

)
sin(ky · ym) (S4)

where X̂†
n,m

create an exciton at site n and layer m, and â
†
k create cavity photons of wavevector k with transition frequency of εk = c

ω
|k|,

for c being the speed of light and ϱ = 2.4 is the medium restrictive index. In this work, we consider only two directions, i.e. x and y

such that k = kxςx + kyςy with y as the cavity quantization direction. Along the x direction we impose a periodic boundary condition,
effectively quantizing the kx = 2εny

N ·a where nx = 0,±1,±2, ... and consider primary cavity mode along the y direction such that
ky = ε

L
with L as the distance between the two reflective mirrors of the optical cavity. To simplify our notation, we denote k = kx and

label all photonic operators and related parameters with k, as ky is fixed, such that âk ↔ âk and εk = c

ω

√
k2
z
+ k2. Other parameters in

this Hamiltonian include ω0 being the excitonic on-site energy; ϖ, characterizes local (Holstein) exciton-phonon coupling constant; ϑ , is
the exciton hopping integral constant, and !k =

√
ϑ0
ϑk

!0 (where !0 is the light-matter coupling constant) is the coupling strength with
the. The sites in each layer in our mode are aligned with x direction with a lattice spacing of a and layers are stacked parallel to each
other along the y direction with the inter-layer spacing of ay , therefore the spatial location of the exciton is Rn,m = xnςx+ ymςy.

In Eqs. S3 and S4, p̂n,m and q̂n,m are the momentum and position of the phonons with frequency ε. In our mixed-quantum-classical
method, we evolve phononic degrees of freedom (DOF) classically using Hamiltonian’s equation of motion, thus {p̂n,m, q̂n,m} ↔
{pn,m, qn,m}, and phonons induce dynamic disorder. Finally, we model the cavity photon loss process using a non-Hermitian Hamilto-
nian

Hloss = ↑ i

2tc

∑

k

â
†
k
âk (S5)

where tc is the cavity photon lifetime.
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S1 Details of the Quantum Dynamics Approach
We considered a light-matter Hamiltonian beyond long-wavelength approximation and with Holstein exciton-phonon coupling. This
Hamiltonian for N sites and M layers is given by

ĤEP =
∑

k

ωkX̂
†
k
X̂k + !k

(
X̂

†
k
âk +Xkâ

†
k

)
+ εkâ

†
k
âk =

∑

k

ĤEP(k)

Rn(t) → Rn(0) cosεt+
1

ε
Pn(0) sinεt. (S1)

ĤLM ↑ ĤLM(t) = ĤEP + P̂ e
iωt + P̂

†
e
→iωt (S2)

ĤLM = Ĥex + Ĥphn + Ĥcav + Ĥex→phn + Ĥex-cav + Ĥloss (S3)

Where Ĥex, Ĥphn, and Ĥcav indicate the bare exciton, phonon, and cavity terms of Hamiltonian respectively,

Ĥex =
N∑

n

M∑

m

[
ω0X̂

†
n,m

X̂n,m ↓ ϑ

(
X̂

†
n+1,mX̂n,m + h.c.

)]
, Ĥphn =

∑

n,m

(
p̂
2
n,m

2
+

1

2
ε
2
q̂
2
n,m

)
, Ĥcav =

∑

k

εkâ
†
kâk (S4)

and Hex-phn and Hex-cav represents exciton-phonon and exciton-photon coupling terms, respectively

Ĥex→phn = ϖ

∑

n,m

q̂n,mX̂
†
n,m

X̂n,m, Ĥex-cav =
∑

n,m,k

!k↔
N

(
X̂

†
n,m

âke
ikxn + h.c.

)
sin(ky · ym) (S5)

where X̂†
n,m

create an exciton at site n and layer m, and â
†
k create cavity photons of wavevector k with transition frequency of εk = c

ε
|k|,

for c being the speed of light and ϱ = 2.4 is the medium restrictive index. In this work, we consider only two directions, i.e. x and y

such that k = kxςx + kyςy with y as the cavity quantization direction. Along the x direction we impose a periodic boundary condition,
effectively quantizing the kx = 2ϑny

N ·a where nx = 0,±1,±2, ... and consider primary cavity mode along the y direction such that
ky = ϑ

L
with L as the distance between the two reflective mirrors of the optical cavity. To simplify our notation, we denote k = kx and

label all photonic operators and related parameters with k, as ky is fixed, such that âk ↑ âk and εk = c

ε

√
k2
z
+ k2. Other parameters in

this Hamiltonian include ω0 being the excitonic on-site energy; ϖ, characterizes local (Holstein) exciton-phonon coupling constant; ϑ , is
the exciton hopping integral constant, and !k =

√
ω0
ωk

!0 (where !0 is the light-matter coupling constant) is the coupling strength with
the. The sites in each layer in our mode are aligned with x direction with a lattice spacing of a and layers are stacked parallel to each
other along the y direction with the inter-layer spacing of ay , therefore the spatial location of the exciton is Rn,m = xnςx+ ymςy.

In Eqs. S4 and S5, p̂n,m and q̂n,m are the momentum and position of the phonons with frequency ε. In our mixed-quantum-classical
method, we evolve phononic degrees of freedom (DOF) classically using Hamiltonian’s equation of motion, thus {p̂n,m, q̂n,m} ↑
{pn,m, qn,m}, and phonons induce dynamic disorder. Finally, we model the cavity photon loss process using a non-Hermitian Hamilto-
nian

Hloss = ↓ i

2tc

∑

k

â
†
k
âk (S6)

where tc is the cavity photon lifetime.
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S1 Details of the Quantum Dynamics Approach
We considered a light-matter Hamiltonian beyond long-wavelength approximation and with Holstein exciton-phonon coupling. This
Hamiltonian for N sites and M layers is given by

ĤEP =
∑

k

ωkX̂
†
k
X̂k + !k

(
X̂

†
k
âk +Xkâ

†
k

)
+ εkâ

†
k
âk =

∑

k

ĤEP(k)

P̂ =
∑

n

ϑX̂
†
n
X̂n

(
Rn(0)/2 + Pn(0)/2iε

)
(S1)

Rn(t) → Rn(0) cosεt+
1

ε
Pn(0) sinεt. (S2)

ĤLM ↑ ĤLM(t) = ĤEP + P̂ e
iωt + P̂

†
e
→iωt (S3)

ĤLM = Ĥex + Ĥphn + Ĥcav + Ĥex→phn + Ĥex-cav + Ĥloss (S4)

Where Ĥex, Ĥphn, and Ĥcav indicate the bare exciton, phonon, and cavity terms of Hamiltonian respectively,

Ĥex =
N∑

n

M∑

m

[
ω0X̂

†
n,m

X̂n,m ↓ ϖ

(
X̂

†
n+1,mX̂n,m + h.c.

)]
, Ĥphn =

∑

n,m

(
p̂
2
n,m

2
+

1

2
ε
2
q̂
2
n,m

)
, Ĥcav =

∑

k

εkâ
†
kâk (S5)

and Hex-phn and Hex-cav represents exciton-phonon and exciton-photon coupling terms, respectively

Ĥex→phn = ϑ

∑

n,m

q̂n,mX̂
†
n,m

X̂n,m, Ĥex-cav =
∑

n,m,k

!k↔
N

(
X̂

†
n,m

âke
ikxn + h.c.

)
sin(ky · ym) (S6)

where X̂†
n,m

create an exciton at site n and layer m, and â
†
k create cavity photons of wavevector k with transition frequency of εk = c

ε
|k|,

for c being the speed of light and ϱ = 2.4 is the medium restrictive index. In this work, we consider only two directions, i.e. x and y

such that k = kxςx + kyςy with y as the cavity quantization direction. Along the x direction we impose a periodic boundary condition,
effectively quantizing the kx = 2ϑny

N ·a where nx = 0,±1,±2, ... and consider primary cavity mode along the y direction such that
ky = ϑ

L
with L as the distance between the two reflective mirrors of the optical cavity. To simplify our notation, we denote k = kx and

label all photonic operators and related parameters with k, as ky is fixed, such that âk ↑ âk and εk = c

ε

√
k2
z
+ k2. Other parameters in

this Hamiltonian include ω0 being the excitonic on-site energy; ϑ, characterizes local (Holstein) exciton-phonon coupling constant; ϖ , is
the exciton hopping integral constant, and !k =

√
ω0
ωk

!0 (where !0 is the light-matter coupling constant) is the coupling strength with
the. The sites in each layer in our mode are aligned with x direction with a lattice spacing of a and layers are stacked parallel to each
other along the y direction with the inter-layer spacing of ay , therefore the spatial location of the exciton is Rn,m = xnςx+ ymςy.

In Eqs. S5 and S6, p̂n,m and q̂n,m are the momentum and position of the phonons with frequency ε. In our mixed-quantum-classical
method, we evolve phononic degrees of freedom (DOF) classically using Hamiltonian’s equation of motion, thus {p̂n,m, q̂n,m} ↑
{pn,m, qn,m}, and phonons induce dynamic disorder. Finally, we model the cavity photon loss process using a non-Hermitian Hamilto-
nian

Hloss = ↓ i

2tc

∑

k

â
†
k
âk (S7)
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FIG. 1. (a) Schematic 3-D model of exciton-polariton transport
within an optical cavity. (b) Exciton-polariton band structure from
simulation and theory with no phonon coupling, (c) with phonon
coupling ω0/2, (d) with phonon coupling ω0, (e) with phonon cou-
pling 3ω0/2, where ω0 is the phonon coupling. The parameter
ω0 = 5.85→ 10→4 a.u. Further we use ! = 3900 cm→1, N = 40001,
ε = 0, ϑ0 = 2.58 eV, and ϖ0 = 3.2 eV.

===

↑Â↓ ↔
〈
↑”(t)|Â|”(t)↓

〉
MFE

where ↑...↓MFE indicates averaging over
realizations of initial nuclear coordinates {Rn(0), Pn(0)}.

The angle-resolved optical spectra I(ϑ, k) can be obtained by
directly propagating the quantum dynamics to compute

I(ϑ, k) = lim
T↑↓

∫ T

0
dt e

iωt〈
↑1k|”(t)↓

〉
MFE

· cos(ϱt/2T ), (4)

where |”(0)↓ = â
†
k|0̄↓ = |1k↓. Note that we have added the term

cos(ϱt/2T ) to suppress spurious Gibbs oscillations. Our numeri-
cal result, presented in Fig.1, illustrates the emergence of complex
vibronic structure in the momentum-resolved polaritonic spectra
in the presence of phonon modes. As can be seen in these fig-
ures, despite the absence of a strict translational symmetry, the
angle-resolved spectra suggest the existence of a quasi-dispersion
of polaron-polaritons. Such vibronic structure in exciton-polariton
bands has been seen in recent experiments [46, 47]. Below, we de-
rive the analytical forms of these quasi-bands with details provided
in the Supporting Information.

To obtain an analytical expression for these polaron-polariton
(quasi) bands, we first make the classical path approximation [27,
48, 49], such that R̈n(t) ↔ ↗ϑ

2
Rn(t) with

Rn(t) ↔ Rn(0) cosϑt+
1

ϑ
Pn(0) sinϑt. (5)
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Notice the similarity between Ĥpl(t) and the typical laser-matter
Hamiltonian, with phonon degrees of freedom (or molecular vibra-
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Here we have introduced the bosonic operator B̂ that creates an
excitation in the phononic field. Further, ĤF is expressed as
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(â†kX̂ne
→ik·rn + âkX̂
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Introduction. Coupling quantized electromagnetic radiation
to excitons forms exciton-polaritons (EPs), a hybrid photon-matter
quasi-particle [1–7], that demonstrates a wide range of exotic phe-
nomena [8–16], including enhanced transport surpassing the inher-
ent limits of bare-exciton transport [5, 17–22]. This extraordinary
phenomenon, namely cavity-enhanced exciton transport, demon-
strates the unique nature of exciton-polaritons, redefining the tra-
ditional paradigms of energy transport with possible applications
in quantum information science and chemical reactivity [5, 7, 23].

A superposition of neighboring exciton states in reciprocal space
leads to coherent ballistic propagation with a group velocity equal
to the slope of the band structure in the absence of dissipation [24].
Phonons, which are intrinsic to materials, break the translational
symmetry of an excitonic system, leading to phonon-induced de-
coherence and incoherent di!usive motion [25–28]. Therefore, it is
expected that the coherent ballistic motion of exciton-polaritons
will exhibit group velocities matching the exciton-polariton disper-
sion for times less than the decoherence lifetime [7, 29, 30]. Inter-
estingly, recent experiments [18, 19, 31, 32] indicate that exciton-
polaritons with significantly high excitonic character (up to →50%
excitonic) show long-lived coherent ballistic motion (up to hundreds
of femtoseconds) [17–19, 33] with group velocities lower than the
slopes of the exciton-polariton band structure [5, 18, 19, 32]. De-
spite many recent insightful theoretical works on exciton-polariton
dynamics [18, 34–40], including a recent inspiring work [37] fo-
cusing on the group velocity renormalization phenomena within a
perturbative framework, a full microscopic understanding of this
extraordinary phenomenon has remained elusive.

Here we introduce a new theoretical framework to understand
the complex polariton dispersion formed by hybridizing excitons,
photons, and phonons, as well as their coherent dynamics inside op-
tical cavities. Given the intractable nature of the full quantum me-
chanical problem, we introduce a convenient picture where exciton-
polaritons are embedded in a classical phonon field. We quantize
this phonon field using the Floquet formalism to derive an analyti-
cal model exhibiting translational symmetry to a good approxima-
tion, allowing for coherent motion. This analytical model produces
an extremely accurate description of exciton-polariton dispersion
when compared to the angle-resolved polariton spectra obtained
using a mixed quantum-classical approach [18, 34–37]. Using our
model, we show that the presence of phonons introduces vibronic
structure in the exciton-polariton dispersion, which we refer to as
the polaron-polariton dispersion. We show that this vibronic struc-
ture is responsible for a renormalization of the group velocity and
that despite a strong interaction with phonons, an e!ective band
structure model can be adopted. Our theory not only serves as a
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convenient analytical model to understand polariton spectra but
also provides new insights into the interplay between phonons and
exciton-polaritons.

Theory. We consider a generalized multimode Holstein-Tavis-
Cummings Hamiltonian [7, 8, 34, 41], which describes an exciton-
polariton system beyond the long-wavelength approximation, in-
teracting with phonons and is written as

ĤLM =
∑

n

X̂
†
nX̂nω0 +

∑

k

â
†
kâkεc(k) +

∑

n

P̂
2
n

2
+

1

2
ε
2
R̂

2
n

+ ϑ

∑

n

(X̂†
nX̂n+1 + X̂

†
n+1X̂n) +

∑

n

ϖX̂
†
nX̂nR̂n

+
∑

n,k

”k
↑
N

[
â
†
kX̂ne

↑ik·rn + âkX̂
†
ne

ik·rn
]
. (1)

Here X̂
†
n (â†k) creates an excitation (photon) at site n (mode k),

and Rn (Pn) is the position (momentum) operator for the nth
phonon mode. Here ω0 is the on-site energy with each site located
at rn = a ·n with a as the lattice constant, ϑ is the hopping param-
eter, ϖ is the exciton-phonon coupling, and ”k = ”

√
ε0/εc(k) is

the exciton-photon coupling. Finally, εc(k) and ε are the photon
and phonon frequency, respectively. Further details are provided
in the supporting information. Notably, the phonon degrees of
freedom break the translational symmetry of the exciton-polariton
system. Consequently, the polaron-polariton, formed through the
hybridization of excitons, photons, and phonons, is not expected
to exhibit a strict band structure. Nevertheless, we demonstrate
that a quasi-band structure framework can be employed, e!ectively
capturing the complex ballistic transport of exciton-polaritons.

Direct (analytical or numerical) quantum mechanical treatment
of this light-matter Hamiltonian is a formidable task given that po-
laritonic dispersion can only be obtained when using N → 105 sites
for experimentally relevant values of the lattice constant a (chosen
here to be 1.2 nm). To solve this intractable problem, we em-
ploy a mixed-quantum-classical approach, namely the mean-field
Ehrenfest (MFE) method [7, 42, 43], that is known to accurately
reproduce quantum vibronic structure in optical spectra in a single-
site exciton-phonon model [44, 45], despite the classical treatment
of phonons. Within this approach, the phonon modes are treated
classically, i.e. {R̂n, P̂n} ↓ {Rn, Pn}, while the photonic and ex-
citonic parts are propagated quantum mechanically using the po-
laritonic Hamiltonian Ĥpl(R) = ĤLM ↔

∑
n P

2
n/2. The equations

of motion in the MFE approach (in atomic units) are written as

i|#̇(t)↗ = Ĥpl(R)|#(t)↗, (2)

Ẍn(t) = Ṗn(t) = ↔

〈
#(t)

∣∣∣
dĤpl(R)

dRn

∣∣∣#(t)
〉
. (3)

The initial nuclear coordinates {Rn(0), Pn(0)} are sampled from
a Wigner distribution (see details in the Supporting Informa-
tion), and an expectation value of an operator Â is computed as
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an extremely accurate description of exciton-polariton dispersion
when compared to the angle-resolved polariton spectra obtained
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n (â†k) creates an excitation (photon) at site n (mode k),

and Rn (Pn) is the position (momentum) operator for the nth
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at rn = a ·n with a as the lattice constant, ϑ is the hopping param-
eter, ϖ is the exciton-phonon coupling, and ”k = ”
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the exciton-photon coupling. Finally, εc(k) and ε are the photon
and phonon frequency, respectively. Further details are provided
in the supporting information. Notably, the phonon degrees of
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system. Consequently, the polaron-polariton, formed through the
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that a quasi-band structure framework can be employed, e!ectively
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laritonic dispersion can only be obtained when using N → 105 sites
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Ehrenfest (MFE) method [7, 42, 43], that is known to accurately
reproduce quantum vibronic structure in optical spectra in a single-
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of phonons. Within this approach, the phonon modes are treated
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citonic parts are propagated quantum mechanically using the po-
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exciton-phonon and exciton-cavity interactions. Here, the last term
Ĥloss describes cavity photon loss. The bare excitonic Hamiltonian
is written as

Ĥex =
N∑

n

M∑

m

[
ω0X̂

†
n,mX̂n,m → ε

(
X̂

†
n+1,mX̂n,m + h.c.

)]
, (2)

where X̂
†
n,m creates an exciton at the site n in the mth layer, ω0 is

the onsite energy and ε is the hopping parameter. These layers are
stacked parallel to each other with an interlayer spacing of ay = 4
nm, with each site separated laterally by a distance of a = 1.2
nm, which corresponds to typical perovskite materials [22]. In this
work, we also consider one phonon degree of freedom (DOF) per
site, with the bare phonon Hamiltonian given by

Ĥphn =
∑

n,m

(
p̂
2
n,m

2
+

1

2
ϑ
2
q̂
2
n,m

)
, (3)

where p̂n,m and q̂n,m are the momentum and position of the
phonons with frequency ϑ = 1440 cm→1 [22]. We consider a typical
form of the exciton-phonon coupling [2, 23–25] described by

Ĥex→phn = ϖ

∑

n,m

q̂n,mX̂
†
n,mX̂n,m, (4)

where ϖ is the exciton-phonon coupling strength. The bare cavity
Hamiltonian Ĥcav describes a set of confined radiation modes in a
Fabry-Pérot optical cavity [7, 26–28] such that

Ĥcav =
∑

k

ϑkâ
†
kâk , (5)

where â
†
k creates a photon of wavevector k with a frequency ϑk =

c

ω
|k| where c and ϱ = 2.4 are the speed of light and the refractive

index, respectively. In this work, we consider only two directions,
i.e. x and y such that k = kxςx+ kyςy with y as the cavity quanti-
zation direction. Similar to recent work [2, 9, 15, 20, 24, 29, 30] we
impose a periodic boundary condition in the x direction, e!ectively

quantizing the kx =
2εny

N·a where nx = 0,±1,±2, ... and consider
primary cavity mode along the y direction such that ky = ε

L
with

L = 1000 Å as the distance between the two reflective mirrors of
the optical cavity. To simplify our notation, we denote k = kx

and label all photonic operators and related parameters with k,

as ky is fixed, such that Ĥcav =
∑

k ϑkâ
†
kâk ↑

∑
k
ϑkâ

†
k
âk and

ϑk = c

ω

√
k2y + k2.

The light-matter interactions beyond the long-wavelength ap-
proximation [2, 24, 30, 31] is described by the Ĥex-cav as

Ĥex-cav =
∑

n,m,k

”k↓
N

(
X̂

†
n,mâke

ikxn + h.c.

)
sin(ky · ym) , (6)

where ”k =
√

ϑ0
ϑk

”0 (”0 = 480 meV chosen here) is the light-

matter coupling strength with the spatial location of the exciton

X̂
†
n,m as Rn,m = xnςx+ ymςy. Finally, we model the cavity photon

loss using a non-Hermitian Hamiltonian [20, 32–34]

Ĥloss = →
i

2tc

∑

k

â
†
k
âk , (7)

where tc is the cavity photon lifetime.
Quantum Dynamical Approach. In this work, we employ a

custom mixed-quantum-classical method based on the mean-field
Ehrenfest approach to simulate the dynamics of the light-matter
hybrid system. Within the standard Ehrenfest approach, that has
been extensively used to simulate non-adiabatic dynamics of polari-
tons, [7, 9, 10, 20, 35–38] the nuclear (or slow) degree of freedom
is evolved classically, with {q̂n,m, p̂n,m} ↑ {qn,m, pn,m}, following
the Hamiltonian’s equation of motion,

ṗn,m(t) = →
〈
#(t)

∣∣∣
dĤLM

dqn,m

∣∣∣#(t)
〉
, q̇n,m(t) = pn,m(t), (8)

where |#(t)↔ is the excitonic-photonic wavefunction at time t.
The excitonic-photonic wavefunction is evolved using the time-
dependent Schrödinger equation written as

i|#̇(t)↔ =
[
ĤLM →

1

2

∑

n

P
2
n

2

]
|#(t)↔. (9)

In this work, we confine the exciton-polariton dynamics to the sin-
gle excited subspace, such that

|#(t)↔ =
(∑

k

ck(t)â
†
k
+

∑

n,m

bn,m(t)X̂†
n,m

)
|0̄↔ (10)

↗
∑

k

ck(t)|1k↔+
∑

n,m

bn,m(t)|n,m↔ (11)

where ck(t) and bn,m(t) are time-dependent coe$cients. In the
second line, we have introduced the compact representation |1k↔ ↗
â
†
k
|0̄↔ and |n,m↔ ↗ X̂

†
n,m|0̄↔, with |0̄↔ as the ground (or vacuum)

state of the system, for simplicity. Despite the mixed quantum-
classical treatment of the full light-matter Hamiltonian, numeri-
cally solving Eq. 9 is extremely challenging as the present work
requires a basis of size ↘ 106. To resolve this issue, we develop
a split-operator approach where a short-time (a single time-step)
propagation of |#(t)↔ is obtained as

|#(t+ φt)↔ = e
→iĤLMϖt|#(t)↔ (12)

≃ ÛftÛB

(
Û

†
BÛ

†
fte

→iĤEPϖt
ÛftÛB

)
Û

†
BÛ

†
fte

→iĤenvϖt|#(t)↔

= ÛftÛB · e→i(Û†
BÛ

†
ftĤEPÛftÛB)ϖt · Û†

BÛ
†
ft · e

→iĤenvϖt|#(t)↔,

where ĤLM = ĤEP + Ĥenv with Ĥenv = Ĥphn + Ĥex→phn + Ĥloss

and ĤEP = Ĥex+Ĥcav+Ĥex-cav. Here Ĥenv is the diagonal in the
exciton-photon basis {|1k↔, |n,m↔} chosen here. As a result, the ac-

tion of the matrix e
→iĤenvϖt on the vector |#(t)↔ reduces to a simple

Hadamard product between a vector containing the diagonal ele-

ments of e→iĤenvϖt and |#(t)↔. Meanwhile, Û†
ft is a unitary operator

that Fourier transforms the excitonic subspace within each layer,

such that Û
†
ft|#(t)↔ =

∑
k
ck(t)|1k↔ + Û

†
ft

∑
n,m

bn,m(t)|n,m↔ =∑
k
ck(t)|1k↔+

∑
k,m

bk,m(t)|k,m↔. We perform this Fourier trans-

formation using the Fast Fourier Transformation (FFT) algorithm,
which scales as N logN resulting in a significant reduction of the
computation cost [29, 39, 40]. Importantly, here we introduce the
unitary operator ÛB = Ûdb · ÛD, where Ûdb transforms the ex-
citonic subspace into a dark-bright layers subspace [15] and ÛD

diagonalizes this transformed exciton-polariton Hamiltonian,

Û
†
BÛ

†
ftĤEPÛftÛB = Û

†
B

[
Û

†
ft(Ĥex + Ĥex-cav)Ûft + Ĥcav


ÛB (13)

= Û
†
D

∑

k

[
ωkX̂

†
k,b

X̂k,b +
↓
S”k

(
X̂

†
k,b

âk + h.c.

)

+ ϑkâ
†
k
âk

]
ÛD +

∑

k,d

ωkX̂
†
k,d

X̂k,d

=
∑

k,i↑{±}
ϑk,iP̂

†
k,i

P̂k,i +
∑

k,d

ωkX̂
†
k,d

X̂k,d (14)

where X̂
†
k,b

= 1↓
S
∑

m
sin(k · ym)X̂†

k,m
are bright layer exciton

operators, with the normalization constant S =
∑

m
sin2(k · ym).

Here, X̂
†
k,b

creates an exciton delocalized over all layers with an

in-plane wavevector k. On the other hand, X̂†
k,d

=
∑

m
sm,dX̂

†
k,m

,

with
∑

m
s
2
m,d

= 1 and
∑

m
sm,d · sin(k · ym) = 0, are dark layers

exciton operators that do not couple to cavity radiation modes.
These dark exciton operators form dark exciton bands, which are
illustrated in Fig. 1d. In the last line of Eq. 13, we have introduced
the upper and lower polariton operators,

P̂
†
k,+ = sin ↼k · â†

k
+ cos ↼k · X̂†

k,b
(15)

P̂
†
k,→ = cos ↼k · â†

k
→ sin ↼k · X̂†

k,b
(16)

Mixed Quantum Classical Dynamics

Classical Path Approximation
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S1 Details of the Quantum Dynamics Approach
We considered a light-matter Hamiltonian beyond long-wavelength approximation and with Holstein exciton-phonon coupling. This
Hamiltonian for N sites and M layers is given by

ĤEP =
∑

k

ωkX̂
†
k
X̂k + !k

(
X̂

†
k
âk +Xkâ

†
k

)
+ εkâ

†
k
âk =

∑

k

ĤEP(k)

Rn(t) → Rn(0) cosεt+
1

ε
Pn(0) sinεt. (S1)

ĤLM = Ĥex + Ĥphn + Ĥcav + Ĥex→phn + Ĥex-cav + Ĥloss (S2)

Where Ĥex, Ĥphn, and Ĥcav indicate the bare exciton, phonon, and cavity terms of Hamiltonian respectively,

Ĥex =
N∑

n

M∑

m

[
ω0X̂

†
n,m

X̂n,m ↑ ϑ

(
X̂

†
n+1,mX̂n,m + h.c.

)]
, Ĥphn =

∑

n,m

(
p̂
2
n,m

2
+

1

2
ε
2
q̂
2
n,m

)
, Ĥcav =

∑

k

εkâ
†
kâk (S3)

and Hex-phn and Hex-cav represents exciton-phonon and exciton-photon coupling terms, respectively

Ĥex→phn = ϖ

∑

n,m

q̂n,mX̂
†
n,m

X̂n,m, Ĥex-cav =
∑

n,m,k

!k↓
N

(
X̂

†
n,m

âke
ikxn + h.c.

)
sin(ky · ym) (S4)

where X̂†
n,m

create an exciton at site n and layer m, and â
†
k create cavity photons of wavevector k with transition frequency of εk = c

ω
|k|,

for c being the speed of light and ϱ = 2.4 is the medium restrictive index. In this work, we consider only two directions, i.e. x and y

such that k = kxςx + kyςy with y as the cavity quantization direction. Along the x direction we impose a periodic boundary condition,
effectively quantizing the kx = 2εny

N ·a where nx = 0,±1,±2, ... and consider primary cavity mode along the y direction such that
ky = ε

L
with L as the distance between the two reflective mirrors of the optical cavity. To simplify our notation, we denote k = kx and

label all photonic operators and related parameters with k, as ky is fixed, such that âk ↔ âk and εk = c

ω

√
k2
z
+ k2. Other parameters in

this Hamiltonian include ω0 being the excitonic on-site energy; ϖ, characterizes local (Holstein) exciton-phonon coupling constant; ϑ , is
the exciton hopping integral constant, and !k =

√
ϑ0
ϑk

!0 (where !0 is the light-matter coupling constant) is the coupling strength with
the. The sites in each layer in our mode are aligned with x direction with a lattice spacing of a and layers are stacked parallel to each
other along the y direction with the inter-layer spacing of ay , therefore the spatial location of the exciton is Rn,m = xnςx+ ymςy.

In Eqs. S3 and S4, p̂n,m and q̂n,m are the momentum and position of the phonons with frequency ε. In our mixed-quantum-classical
method, we evolve phononic degrees of freedom (DOF) classically using Hamiltonian’s equation of motion, thus {p̂n,m, q̂n,m} ↔
{pn,m, qn,m}, and phonons induce dynamic disorder. Finally, we model the cavity photon loss process using a non-Hermitian Hamilto-
nian

Hloss = ↑ i

2tc

∑

k

â
†
k
âk (S5)

where tc is the cavity photon lifetime.
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S1 Details of the Quantum Dynamics Approach
We considered a light-matter Hamiltonian beyond long-wavelength approximation and with Holstein exciton-phonon coupling. This
Hamiltonian for N sites and M layers is given by

ĤEP =
∑

k

ωkX̂
†
k
X̂k + !k

(
X̂

†
k
âk +Xkâ

†
k

)
+ εkâ

†
k
âk =

∑

k

ĤEP(k)

Rn(t) → Rn(0) cosεt+
1

ε
Pn(0) sinεt. (S1)

ĤLM ↑ ĤLM(t) = ĤEP + P̂ e
iωt + P̂

†
e
→iωt (S2)

ĤLM = Ĥex + Ĥphn + Ĥcav + Ĥex→phn + Ĥex-cav + Ĥloss (S3)

Where Ĥex, Ĥphn, and Ĥcav indicate the bare exciton, phonon, and cavity terms of Hamiltonian respectively,

Ĥex =
N∑

n

M∑

m

[
ω0X̂

†
n,m

X̂n,m ↓ ϑ

(
X̂

†
n+1,mX̂n,m + h.c.

)]
, Ĥphn =

∑

n,m

(
p̂
2
n,m

2
+

1

2
ε
2
q̂
2
n,m

)
, Ĥcav =

∑

k

εkâ
†
kâk (S4)

and Hex-phn and Hex-cav represents exciton-phonon and exciton-photon coupling terms, respectively

Ĥex→phn = ϖ

∑

n,m

q̂n,mX̂
†
n,m

X̂n,m, Ĥex-cav =
∑

n,m,k

!k↔
N

(
X̂

†
n,m

âke
ikxn + h.c.

)
sin(ky · ym) (S5)

where X̂†
n,m

create an exciton at site n and layer m, and â
†
k create cavity photons of wavevector k with transition frequency of εk = c

ε
|k|,

for c being the speed of light and ϱ = 2.4 is the medium restrictive index. In this work, we consider only two directions, i.e. x and y

such that k = kxςx + kyςy with y as the cavity quantization direction. Along the x direction we impose a periodic boundary condition,
effectively quantizing the kx = 2ϑny

N ·a where nx = 0,±1,±2, ... and consider primary cavity mode along the y direction such that
ky = ϑ

L
with L as the distance between the two reflective mirrors of the optical cavity. To simplify our notation, we denote k = kx and

label all photonic operators and related parameters with k, as ky is fixed, such that âk ↑ âk and εk = c

ε

√
k2
z
+ k2. Other parameters in

this Hamiltonian include ω0 being the excitonic on-site energy; ϖ, characterizes local (Holstein) exciton-phonon coupling constant; ϑ , is
the exciton hopping integral constant, and !k =

√
ω0
ωk

!0 (where !0 is the light-matter coupling constant) is the coupling strength with
the. The sites in each layer in our mode are aligned with x direction with a lattice spacing of a and layers are stacked parallel to each
other along the y direction with the inter-layer spacing of ay , therefore the spatial location of the exciton is Rn,m = xnςx+ ymςy.

In Eqs. S4 and S5, p̂n,m and q̂n,m are the momentum and position of the phonons with frequency ε. In our mixed-quantum-classical
method, we evolve phononic degrees of freedom (DOF) classically using Hamiltonian’s equation of motion, thus {p̂n,m, q̂n,m} ↑
{pn,m, qn,m}, and phonons induce dynamic disorder. Finally, we model the cavity photon loss process using a non-Hermitian Hamilto-
nian

Hloss = ↓ i

2tc

∑

k

â
†
k
âk (S6)

where tc is the cavity photon lifetime.
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S1 Details of the Quantum Dynamics Approach
We considered a light-matter Hamiltonian beyond long-wavelength approximation and with Holstein exciton-phonon coupling. This
Hamiltonian for N sites and M layers is given by

ĤEP =
∑

k

ωkX̂
†
k
X̂k + !k

(
X̂

†
k
âk +Xkâ

†
k

)
+ εkâ

†
k
âk =

∑

k

ĤEP(k)

P̂ =
∑

n

ϑX̂
†
n
X̂n

(
Rn(0)/2 + Pn(0)/2iε

)
(S1)

Rn(t) → Rn(0) cosεt+
1

ε
Pn(0) sinεt. (S2)

ĤLM ↑ ĤLM(t) = ĤEP + P̂ e
iωt + P̂

†
e
→iωt (S3)

ĤLM = Ĥex + Ĥphn + Ĥcav + Ĥex→phn + Ĥex-cav + Ĥloss (S4)

Where Ĥex, Ĥphn, and Ĥcav indicate the bare exciton, phonon, and cavity terms of Hamiltonian respectively,

Ĥex =
N∑

n

M∑

m

[
ω0X̂

†
n,m

X̂n,m ↓ ϖ

(
X̂

†
n+1,mX̂n,m + h.c.

)]
, Ĥphn =

∑

n,m

(
p̂
2
n,m

2
+

1

2
ε
2
q̂
2
n,m

)
, Ĥcav =

∑

k

εkâ
†
kâk (S5)

and Hex-phn and Hex-cav represents exciton-phonon and exciton-photon coupling terms, respectively

Ĥex→phn = ϑ

∑

n,m

q̂n,mX̂
†
n,m

X̂n,m, Ĥex-cav =
∑

n,m,k

!k↔
N

(
X̂

†
n,m

âke
ikxn + h.c.

)
sin(ky · ym) (S6)

where X̂†
n,m

create an exciton at site n and layer m, and â
†
k create cavity photons of wavevector k with transition frequency of εk = c

ε
|k|,

for c being the speed of light and ϱ = 2.4 is the medium restrictive index. In this work, we consider only two directions, i.e. x and y

such that k = kxςx + kyςy with y as the cavity quantization direction. Along the x direction we impose a periodic boundary condition,
effectively quantizing the kx = 2ϑny

N ·a where nx = 0,±1,±2, ... and consider primary cavity mode along the y direction such that
ky = ϑ

L
with L as the distance between the two reflective mirrors of the optical cavity. To simplify our notation, we denote k = kx and

label all photonic operators and related parameters with k, as ky is fixed, such that âk ↑ âk and εk = c

ε

√
k2
z
+ k2. Other parameters in

this Hamiltonian include ω0 being the excitonic on-site energy; ϑ, characterizes local (Holstein) exciton-phonon coupling constant; ϖ , is
the exciton hopping integral constant, and !k =

√
ω0
ωk

!0 (where !0 is the light-matter coupling constant) is the coupling strength with
the. The sites in each layer in our mode are aligned with x direction with a lattice spacing of a and layers are stacked parallel to each
other along the y direction with the inter-layer spacing of ay , therefore the spatial location of the exciton is Rn,m = xnςx+ ymςy.

In Eqs. S5 and S6, p̂n,m and q̂n,m are the momentum and position of the phonons with frequency ε. In our mixed-quantum-classical
method, we evolve phononic degrees of freedom (DOF) classically using Hamiltonian’s equation of motion, thus {p̂n,m, q̂n,m} ↑
{pn,m, qn,m}, and phonons induce dynamic disorder. Finally, we model the cavity photon loss process using a non-Hermitian Hamilto-
nian

Hloss = ↓ i

2tc

∑

k

â
†
k
âk (S7)
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FIG. 1. (a) Schematic 3-D model of exciton-polariton transport
within an optical cavity. (b) Exciton-polariton band structure from
simulation and theory with no phonon coupling, (c) with phonon
coupling ω0/2, (d) with phonon coupling ω0, (e) with phonon cou-
pling 3ω0/2, where ω0 is the phonon coupling. The parameter
ω0 = 5.85→ 10→4 a.u. Further we use ! = 3900 cm→1, N = 40001,
ε = 0, ϑ0 = 2.58 eV, and ϖ0 = 3.2 eV.

↑Â↓ ↔
〈
↑”(t)|Â|”(t)↓

〉
MFE

where ↑...↓MFE indicates averaging over
realizations of initial nuclear coordinates {Rn(0), Pn(0)}.

The angle-resolved optical spectra I(ϑ, k) can be obtained by
directly propagating the quantum dynamics to compute

I(ϑ, k) = lim
T↑↓

∫ T

0
dt e

iωt〈
↑1k|”(t)↓

〉
MFE

· cos(ϱt/2T ), (4)

where |”(0)↓ = â
†
k|0̄↓ = |1k↓. Note that we have added the term

cos(ϱt/2T ) to suppress spurious Gibbs oscillations. Our numeri-
cal result, presented in Fig.1, illustrates the emergence of complex
vibronic structure in the momentum-resolved polaritonic spectra
in the presence of phonon modes. As can be seen in these fig-
ures, despite the absence of a strict translational symmetry, the
angle-resolved spectra suggest the existence of a quasi-dispersion
of polaron-polaritons. Such vibronic structure in exciton-polariton
bands has been seen in recent experiments [46, 47]. Below, we de-
rive the analytical forms of these quasi-bands with details provided
in the Supporting Information.

To obtain an analytical expression for these polaron-polariton
(quasi) bands, we first make the classical path approximation [27,

48, 49], such that R̈n(t) ↔ ↗ϑ
2
Rn(t) with

Rn(t) ↔ Rn(0) cosϑt+
1

ϑ
Pn(0) sinϑt. (5)

With this analytical expression of Rn(t), the dynamics of the
exciton-polariton wavefunction |”↓ can be thought to be evolving
under the time-periodic Hamiltonian Ĥpl(t) expressed as

Ĥpl(t) = ĤEP + P̂ e
iωt + P̂

†
e
→iωt

, (6)

where P̂ =
∑

n ωX̂
†
nX̂nZn describes the interaction to a phonon

field with Zn = Rn(0)/2+Pn(0)/2iϑ and ĤEP as the pure exciton-
polariton Hamiltonian written as

ĤEP =
∑

n

X̂
†
nX̂nϖ0 + ε

∑

n

(X̂†
nX̂n+1 + X̂

†
n+1X̂n)

+
∑

k

â
†
kâkϑc(k) +

∑

n,k

!k
↘
N

[
â
†
kX̂ne

→ik·rn + âkX̂
†
ne

ik·rn
]
.

Notice the similarity between Ĥpl(t) and the typical laser-matter
Hamiltonian, with phonon degrees of freedom (or molecular vibra-
tions) in our system playing the same role as a laser field. We adapt
the Floquet formalism [50, 51] and rewrite Ĥpl(t) in an extended
space (so-called Sambe space) as a time-independent Hamiltonian
ĤF such that

Ĥpl(t) ≃⇐ ĤF = lim
M↑↓

∑

ij

PjĤFPi,

with Pi ⇒

{
X̂

†
n

(B̂†)M+m

√
(M +m)!

|0̄↓, â†k
(B̂†)M+m

√
(M +m)!

|0̄↓
}
. (7)

Here we have introduced the bosonic operator B̂ that creates an
excitation in the phononic field. Further, ĤF is expressed as

ĤF =
∑

n

(
ϖ0 ↗Mϑ +

ω
↘
M

(ZnB̂ + Z
↔
nB̂

†)
)
X̂

†
nX̂n

+ ε

∑

n

(X̂†
nX̂n+1 + X̂

†
n+1X̂n) + B̂

†
B̂ϑ +

∑

k

â
†
kâkϑc(k)

+
∑

n,k

!k
↘
N

(â†kX̂ne
→ik·rn + âkX̂

†
ne

ik·rn ). (8)

Next, we perform a polaron transformation on ĤF using the
operator ÛD defined as

ÛD =
∏

n

exp

[(
Z

↔
nB̂

†
↗ ZnB̂

)
ωX̂

†
nX̂n

ϑ
↘
M

]
(9)

to obtain Ĥ
↗
F = Û

†
DĤFÛD that is explicitly written as

Ĥ
↗
F =

∑

n

(ϖ0 ↗Mϑ)X̂†
nX̂n + B̂

†
B̂ϑ +

∑

k

â
†
kâkϑc(k) (10)

+ ε

∑

n


X̂

†
nX̂n+1 exp


ω
#ZnB̂ ↗#Z

↔
nB̂

†

ϑ
↘
M


+ h.c.



+
∑

n,k

!k
↘
N

(
â
†
kX̂n exp


ω(ZnB̂ ↗ Z

↔
nB̂

†)

ϑ
↘
M

↗ ik · rn


+ h.c.

)
,

where #Zn = Zn+1 ↗ Zn. To arrive at a simpler form
we further restrict our subspace such that Pi ⇒ S =

X̂

†
n

(B̂†)M+m
↘

(M+m)!
|0̄↓, â†k

(B̂†)M↘
M !

|0̄↓


with M ⇐ ⇑. That is, here we
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FIG. 2. Group velocities extracted from quantum dynamical simu-
lations (filled circles) compared to the predictions of the analytical
model (solid lines) introduced in this work, with phonon frequency
of (a) 1440 cm→1 and (b) 360 cm→1. In (a), the group velocities
for di!erent phonon coupling are plotted, with ω0/2 represented in
red, ω0 in green, and 3ω0/2 in blue. Similarly, in (b), the phonon
coupling strengths are depicted as ω0 (red), 3ω0/2 (green), and 2ω0
(blue).(c),(d) Heatmaps gathered from MFE exciton-polarization
propagation over 0.242 ps, corresponding to highlighted points
in (Fig 2a). Panels (c) and (d) illustrate the phonon coupling
strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
ϖ0 = 3.2 eV.

twofold mystery and provides new microscopic insights into this
extraordinary phenomenon.

Fig. 2a-b presents the polariton group velocity obtained from
our analytical model (solid lines), comparing it to the group ve-
locities obtained by performing direct quantum dynamical simula-
tions (filled circles) at two di!erent phonon frequencies and vari-
ous phonon couplings. Fig. 2c-d presents time-dependent excitonic

density ϱn(t) = ↑↑#(t)|X̂†
nX̂n|#(t)↓↓MFE in the presence and in

the absence of phonon couplings. To perform these simulations, we
have prepared the initial exciton-polariton wavefunction as a lin-
ear combination of polariton states within an energy window $E

centered at an excitation energy E0, such that |#(0)↓ =
∑

cj |Ej↓

with E0↔$E/2 < Ej < E0+$E/2 and |Ej↓ as the eigenstates of

ĤEP . In both cases, we observe a ballistic propagation suggested
by the linear expansion of the wavefront in time, with the latter
propagating relatively slowly as the group velocities presented in
Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as

ĤX + Ĥlaser =
∑

k

X̂
†
kX̂kςk +

ω
↗
2ϑ

∑

k,q

X̂
†
k+qX̂k(b̂q + b̂

†
→q)

+
∑

k

b̂
†
k b̂kϑ + E(t)

∑

k↑K
(X̂†

k + X̂k) (16)

where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
targeting the subspace K, the population leaks out to the sub-
space M = 1 ↔ K via the phonon-induced scattering term

ω↓
2ε

∑
k,q X̂

†
k+qX̂k(b̂q + b̂

†
→q). In contrast, inside an optical cav-

ity, following our analytical model in Eq. 13, a driven light-matter
hybrid system can be modeled as [55]

ĤLM + Ĥlaser = Ĥ
↔
F + E(t)

∑

k↑K
(â†k + âk)

↘

∑

k↑K

[
Ĥk + E(t)(â†k + âk)

]
+

∑

k↑M
Ĥk, (17)

such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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FIG. 2. Group velocities extracted from quantum dynamical simu-
lations (filled circles) compared to the predictions of the analytical
model (solid lines) introduced in this work, with phonon frequency
of (a) 1440 cm→1 and (b) 360 cm→1. In (a), the group velocities
for di!erent phonon coupling are plotted, with ω0/2 represented in
red, ω0 in green, and 3ω0/2 in blue. Similarly, in (b), the phonon
coupling strengths are depicted as ω0 (red), 3ω0/2 (green), and 2ω0
(blue).(c),(d) Heatmaps gathered from MFE exciton-polarization
propagation over 0.242 ps, corresponding to highlighted points
in (Fig 2a). Panels (c) and (d) illustrate the phonon coupling
strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
ϖ0 = 3.2 eV.

twofold mystery and provides new microscopic insights into this
extraordinary phenomenon.

Fig. 2a-b presents the polariton group velocity obtained from
our analytical model (solid lines), comparing it to the group ve-
locities obtained by performing direct quantum dynamical simula-
tions (filled circles) at two di!erent phonon frequencies and vari-
ous phonon couplings. Fig. 2c-d presents time-dependent excitonic

density ϱn(t) = ↑↑#(t)|X̂†
nX̂n|#(t)↓↓MFE in the presence and in

the absence of phonon couplings. To perform these simulations, we
have prepared the initial exciton-polariton wavefunction as a lin-
ear combination of polariton states within an energy window $E

centered at an excitation energy E0, such that |#(0)↓ =
∑

cj |Ej↓

with E0↔$E/2 < Ej < E0+$E/2 and |Ej↓ as the eigenstates of

ĤEP . In both cases, we observe a ballistic propagation suggested
by the linear expansion of the wavefront in time, with the latter
propagating relatively slowly as the group velocities presented in
Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as

ĤX + Ĥlaser =
∑

k

X̂
†
kX̂kςk +

ω
↗
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∑
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+
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where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
targeting the subspace K, the population leaks out to the sub-
space M = 1 ↔ K via the phonon-induced scattering term

ω↓
2ε

∑
k,q X̂

†
k+qX̂k(b̂q + b̂

†
→q). In contrast, inside an optical cav-

ity, following our analytical model in Eq. 13, a driven light-matter
hybrid system can be modeled as [55]

ĤLM + Ĥlaser = Ĥ
↔
F + E(t)

∑

k↑K
(â†k + âk)

↘

∑

k↑K

[
Ĥk + E(t)(â†k + âk)

]
+

∑

k↑M
Ĥk, (17)

such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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FIG. 2. Group velocities extracted from quantum dynamical simu-
lations (filled circles) compared to the predictions of the analytical
model (solid lines) introduced in this work, with phonon frequency
of (a) 1440 cm→1 and (b) 360 cm→1. In (a), the group velocities
for di!erent phonon coupling are plotted, with ω0/2 represented in
red, ω0 in green, and 3ω0/2 in blue. Similarly, in (b), the phonon
coupling strengths are depicted as ω0 (red), 3ω0/2 (green), and 2ω0
(blue).(c),(d) Heatmaps gathered from MFE exciton-polarization
propagation over 0.242 ps, corresponding to highlighted points
in (Fig 2a). Panels (c) and (d) illustrate the phonon coupling
strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
ϖ0 = 3.2 eV.

twofold mystery and provides new microscopic insights into this
extraordinary phenomenon.

Fig. 2a-b presents the polariton group velocity obtained from
our analytical model (solid lines), comparing it to the group ve-
locities obtained by performing direct quantum dynamical simula-
tions (filled circles) at two di!erent phonon frequencies and vari-
ous phonon couplings. Fig. 2c-d presents time-dependent excitonic

density ϱn(t) = ↑↑#(t)|X̂†
nX̂n|#(t)↓↓MFE in the presence and in

the absence of phonon couplings. To perform these simulations, we
have prepared the initial exciton-polariton wavefunction as a lin-
ear combination of polariton states within an energy window $E

centered at an excitation energy E0, such that |#(0)↓ =
∑

cj |Ej↓

with E0↔$E/2 < Ej < E0+$E/2 and |Ej↓ as the eigenstates of

ĤEP . In both cases, we observe a ballistic propagation suggested
by the linear expansion of the wavefront in time, with the latter
propagating relatively slowly as the group velocities presented in
Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as

ĤX + Ĥlaser =
∑

k
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where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
targeting the subspace K, the population leaks out to the sub-
space M = 1 ↔ K via the phonon-induced scattering term

ω↓
2ε

∑
k,q X̂

†
k+qX̂k(b̂q + b̂

†
→q). In contrast, inside an optical cav-

ity, following our analytical model in Eq. 13, a driven light-matter
hybrid system can be modeled as [55]

ĤLM + Ĥlaser = Ĥ
↔
F + E(t)

∑

k↑K
(â†k + âk)

↘

∑

k↑K

[
Ĥk + E(t)(â†k + âk)

]
+

∑
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Ĥk, (17)

such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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FIG. 2. Group velocities extracted from quantum dynamical simu-
lations (filled circles) compared to the predictions of the analytical
model (solid lines) introduced in this work, with phonon frequency
of (a) 1440 cm→1 and (b) 360 cm→1. In (a), the group velocities
for di!erent phonon coupling are plotted, with ω0/2 represented in
red, ω0 in green, and 3ω0/2 in blue. Similarly, in (b), the phonon
coupling strengths are depicted as ω0 (red), 3ω0/2 (green), and 2ω0
(blue).(c),(d) Heatmaps gathered from MFE exciton-polarization
propagation over 0.242 ps, corresponding to highlighted points
in (Fig 2a). Panels (c) and (d) illustrate the phonon coupling
strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
ϖ0 = 3.2 eV.

twofold mystery and provides new microscopic insights into this
extraordinary phenomenon.

Fig. 2a-b presents the polariton group velocity obtained from
our analytical model (solid lines), comparing it to the group ve-
locities obtained by performing direct quantum dynamical simula-
tions (filled circles) at two di!erent phonon frequencies and vari-
ous phonon couplings. Fig. 2c-d presents time-dependent excitonic

density ϱn(t) = ↑↑#(t)|X̂†
nX̂n|#(t)↓↓MFE in the presence and in

the absence of phonon couplings. To perform these simulations, we
have prepared the initial exciton-polariton wavefunction as a lin-
ear combination of polariton states within an energy window $E

centered at an excitation energy E0, such that |#(0)↓ =
∑

cj |Ej↓

with E0↔$E/2 < Ej < E0+$E/2 and |Ej↓ as the eigenstates of

ĤEP . In both cases, we observe a ballistic propagation suggested
by the linear expansion of the wavefront in time, with the latter
propagating relatively slowly as the group velocities presented in
Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as

ĤX + Ĥlaser =
∑

k

X̂
†
kX̂kςk +

ω
↗
2ϑ

∑

k,q

X̂
†
k+qX̂k(b̂q + b̂

†
→q)

+
∑

k

b̂
†
k b̂kϑ + E(t)

∑

k↑K
(X̂†

k + X̂k) (16)

where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
targeting the subspace K, the population leaks out to the sub-
space M = 1 ↔ K via the phonon-induced scattering term
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→q). In contrast, inside an optical cav-
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hybrid system can be modeled as [55]
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(â†k + âk)
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[
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+

∑

k↑M
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such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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FIG. 2. Group velocities extracted from quantum dynamical simu-
lations (filled circles) compared to the predictions of the analytical
model (solid lines) introduced in this work, with phonon frequency
of (a) 1440 cm→1 and (b) 360 cm→1. In (a), the group velocities
for di!erent phonon coupling are plotted, with ω0/2 represented in
red, ω0 in green, and 3ω0/2 in blue. Similarly, in (b), the phonon
coupling strengths are depicted as ω0 (red), 3ω0/2 (green), and 2ω0
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propagation over 0.242 ps, corresponding to highlighted points
in (Fig 2a). Panels (c) and (d) illustrate the phonon coupling
strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
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twofold mystery and provides new microscopic insights into this
extraordinary phenomenon.

Fig. 2a-b presents the polariton group velocity obtained from
our analytical model (solid lines), comparing it to the group ve-
locities obtained by performing direct quantum dynamical simula-
tions (filled circles) at two di!erent phonon frequencies and vari-
ous phonon couplings. Fig. 2c-d presents time-dependent excitonic

density ϱn(t) = ↑↑#(t)|X̂†
nX̂n|#(t)↓↓MFE in the presence and in

the absence of phonon couplings. To perform these simulations, we
have prepared the initial exciton-polariton wavefunction as a lin-
ear combination of polariton states within an energy window $E

centered at an excitation energy E0, such that |#(0)↓ =
∑

cj |Ej↓

with E0↔$E/2 < Ej < E0+$E/2 and |Ej↓ as the eigenstates of

ĤEP . In both cases, we observe a ballistic propagation suggested
by the linear expansion of the wavefront in time, with the latter
propagating relatively slowly as the group velocities presented in
Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as

ĤX + Ĥlaser =
∑
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where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
targeting the subspace K, the population leaks out to the sub-
space M = 1 ↔ K via the phonon-induced scattering term
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∑
k,q X̂
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†
→q). In contrast, inside an optical cav-

ity, following our analytical model in Eq. 13, a driven light-matter
hybrid system can be modeled as [55]

ĤLM + Ĥlaser = Ĥ
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such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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lations (filled circles) compared to the predictions of the analytical
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of (a) 1440 cm→1 and (b) 360 cm→1. In (a), the group velocities
for di!erent phonon coupling are plotted, with ω0/2 represented in
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strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
ϖ0 = 3.2 eV.

twofold mystery and provides new microscopic insights into this
extraordinary phenomenon.

Fig. 2a-b presents the polariton group velocity obtained from
our analytical model (solid lines), comparing it to the group ve-
locities obtained by performing direct quantum dynamical simula-
tions (filled circles) at two di!erent phonon frequencies and vari-
ous phonon couplings. Fig. 2c-d presents time-dependent excitonic

density ϱn(t) = ↑↑#(t)|X̂†
nX̂n|#(t)↓↓MFE in the presence and in

the absence of phonon couplings. To perform these simulations, we
have prepared the initial exciton-polariton wavefunction as a lin-
ear combination of polariton states within an energy window $E

centered at an excitation energy E0, such that |#(0)↓ =
∑

cj |Ej↓

with E0↔$E/2 < Ej < E0+$E/2 and |Ej↓ as the eigenstates of

ĤEP . In both cases, we observe a ballistic propagation suggested
by the linear expansion of the wavefront in time, with the latter
propagating relatively slowly as the group velocities presented in
Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as
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where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
targeting the subspace K, the population leaks out to the sub-
space M = 1 ↔ K via the phonon-induced scattering term

ω↓
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∑
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†
k+qX̂k(b̂q + b̂

†
→q). In contrast, inside an optical cav-

ity, following our analytical model in Eq. 13, a driven light-matter
hybrid system can be modeled as [55]

ĤLM + Ĥlaser = Ĥ
↔
F + E(t)

∑

k↑K
(â†k + âk)

↘

∑

k↑K

[
Ĥk + E(t)(â†k + âk)

]
+
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such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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FIG. 2. Group velocities extracted from quantum dynamical simu-
lations (filled circles) compared to the predictions of the analytical
model (solid lines) introduced in this work, with phonon frequency
of (a) 1440 cm→1 and (b) 360 cm→1. In (a), the group velocities
for di!erent phonon coupling are plotted, with ω0/2 represented in
red, ω0 in green, and 3ω0/2 in blue. Similarly, in (b), the phonon
coupling strengths are depicted as ω0 (red), 3ω0/2 (green), and 2ω0
(blue).(c),(d) Heatmaps gathered from MFE exciton-polarization
propagation over 0.242 ps, corresponding to highlighted points
in (Fig 2a). Panels (c) and (d) illustrate the phonon coupling
strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
ϖ0 = 3.2 eV.

twofold mystery and provides new microscopic insights into this
extraordinary phenomenon.

Fig. 2a-b presents the polariton group velocity obtained from
our analytical model (solid lines), comparing it to the group ve-
locities obtained by performing direct quantum dynamical simula-
tions (filled circles) at two di!erent phonon frequencies and vari-
ous phonon couplings. Fig. 2c-d presents time-dependent excitonic

density ϱn(t) = ↑↑#(t)|X̂†
nX̂n|#(t)↓↓MFE in the presence and in

the absence of phonon couplings. To perform these simulations, we
have prepared the initial exciton-polariton wavefunction as a lin-
ear combination of polariton states within an energy window $E

centered at an excitation energy E0, such that |#(0)↓ =
∑

cj |Ej↓

with E0↔$E/2 < Ej < E0+$E/2 and |Ej↓ as the eigenstates of

ĤEP . In both cases, we observe a ballistic propagation suggested
by the linear expansion of the wavefront in time, with the latter
propagating relatively slowly as the group velocities presented in
Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as

ĤX + Ĥlaser =
∑
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where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
targeting the subspace K, the population leaks out to the sub-
space M = 1 ↔ K via the phonon-induced scattering term

ω↓
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∑
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→q). In contrast, inside an optical cav-

ity, following our analytical model in Eq. 13, a driven light-matter
hybrid system can be modeled as [55]

ĤLM + Ĥlaser = Ĥ
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such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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FIG. 2. Group velocities extracted from quantum dynamical simu-
lations (filled circles) compared to the predictions of the analytical
model (solid lines) introduced in this work, with phonon frequency
of (a) 1440 cm→1 and (b) 360 cm→1. In (a), the group velocities
for di!erent phonon coupling are plotted, with ω0/2 represented in
red, ω0 in green, and 3ω0/2 in blue. Similarly, in (b), the phonon
coupling strengths are depicted as ω0 (red), 3ω0/2 (green), and 2ω0
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in (Fig 2a). Panels (c) and (d) illustrate the phonon coupling
strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
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twofold mystery and provides new microscopic insights into this
extraordinary phenomenon.

Fig. 2a-b presents the polariton group velocity obtained from
our analytical model (solid lines), comparing it to the group ve-
locities obtained by performing direct quantum dynamical simula-
tions (filled circles) at two di!erent phonon frequencies and vari-
ous phonon couplings. Fig. 2c-d presents time-dependent excitonic

density ϱn(t) = ↑↑#(t)|X̂†
nX̂n|#(t)↓↓MFE in the presence and in

the absence of phonon couplings. To perform these simulations, we
have prepared the initial exciton-polariton wavefunction as a lin-
ear combination of polariton states within an energy window $E

centered at an excitation energy E0, such that |#(0)↓ =
∑

cj |Ej↓

with E0↔$E/2 < Ej < E0+$E/2 and |Ej↓ as the eigenstates of

ĤEP . In both cases, we observe a ballistic propagation suggested
by the linear expansion of the wavefront in time, with the latter
propagating relatively slowly as the group velocities presented in
Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as
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where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
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space M = 1 ↔ K via the phonon-induced scattering term

ω↓
2ε

∑
k,q X̂

†
k+qX̂k(b̂q + b̂

†
→q). In contrast, inside an optical cav-

ity, following our analytical model in Eq. 13, a driven light-matter
hybrid system can be modeled as [55]

ĤLM + Ĥlaser = Ĥ
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Ĥk, (17)

such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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ĤEP =
∑

k

ωkX̂
†
k
X̂k + !k

(
X̂

†
k
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k,m
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FIG. 2. Group velocities extracted from quantum dynamical simu-
lations (filled circles) compared to the predictions of the analytical
model (solid lines) introduced in this work, with phonon frequency
of (a) 1440 cm→1 and (b) 360 cm→1. In (a), the group velocities
for di!erent phonon coupling are plotted, with ω0/2 represented in
red, ω0 in green, and 3ω0/2 in blue. Similarly, in (b), the phonon
coupling strengths are depicted as ω0 (red), 3ω0/2 (green), and 2ω0
(blue).(c),(d) Heatmaps gathered from MFE exciton-polarization
propagation over 0.242 ps, corresponding to highlighted points
in (Fig 2a). Panels (c) and (d) illustrate the phonon coupling
strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
ϖ0 = 3.2 eV.

twofold mystery and provides new microscopic insights into this
extraordinary phenomenon.

Fig. 2a-b presents the polariton group velocity obtained from
our analytical model (solid lines), comparing it to the group ve-
locities obtained by performing direct quantum dynamical simula-
tions (filled circles) at two di!erent phonon frequencies and vari-
ous phonon couplings. Fig. 2c-d presents time-dependent excitonic

density ϱn(t) = ↑↑#(t)|X̂†
nX̂n|#(t)↓↓MFE in the presence and in

the absence of phonon couplings. To perform these simulations, we
have prepared the initial exciton-polariton wavefunction as a lin-
ear combination of polariton states within an energy window $E

centered at an excitation energy E0, such that |#(0)↓ =
∑

cj |Ej↓

with E0↔$E/2 < Ej < E0+$E/2 and |Ej↓ as the eigenstates of

ĤEP . In both cases, we observe a ballistic propagation suggested
by the linear expansion of the wavefront in time, with the latter
propagating relatively slowly as the group velocities presented in
Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as

ĤX + Ĥlaser =
∑

k

X̂
†
kX̂kςk +

ω
↗
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where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
targeting the subspace K, the population leaks out to the sub-
space M = 1 ↔ K via the phonon-induced scattering term

ω↓
2ε

∑
k,q X̂

†
k+qX̂k(b̂q + b̂

†
→q). In contrast, inside an optical cav-

ity, following our analytical model in Eq. 13, a driven light-matter
hybrid system can be modeled as [55]

ĤLM + Ĥlaser = Ĥ
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∑
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(â†k + âk)
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∑
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such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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for di!erent phonon coupling are plotted, with ω0/2 represented in
red, ω0 in green, and 3ω0/2 in blue. Similarly, in (b), the phonon
coupling strengths are depicted as ω0 (red), 3ω0/2 (green), and 2ω0
(blue).(c),(d) Heatmaps gathered from MFE exciton-polarization
propagation over 0.242 ps, corresponding to highlighted points
in (Fig 2a). Panels (c) and (d) illustrate the phonon coupling
strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
ϖ0 = 3.2 eV.
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locities obtained by performing direct quantum dynamical simula-
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Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as

ĤX + Ĥlaser =
∑

k

X̂
†
kX̂kςk +

ω
↗
2ϑ

∑

k,q

X̂
†
k+qX̂k(b̂q + b̂

†
→q)

+
∑

k

b̂
†
k b̂kϑ + E(t)

∑

k↑K
(X̂†

k + X̂k) (16)

where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
targeting the subspace K, the population leaks out to the sub-
space M = 1 ↔ K via the phonon-induced scattering term

ω↓
2ε

∑
k,q X̂

†
k+qX̂k(b̂q + b̂

†
→q). In contrast, inside an optical cav-

ity, following our analytical model in Eq. 13, a driven light-matter
hybrid system can be modeled as [55]

ĤLM + Ĥlaser = Ĥ
↔
F + E(t)

∑

k↑K
(â†k + âk)

↘

∑

k↑K

[
Ĥk + E(t)(â†k + âk)

]
+

∑

k↑M
Ĥk, (17)

such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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FIG. 2. Group velocities extracted from quantum dynamical simu-
lations (filled circles) compared to the predictions of the analytical
model (solid lines) introduced in this work, with phonon frequency
of (a) 1440 cm→1 and (b) 360 cm→1. In (a), the group velocities
for di!erent phonon coupling are plotted, with ω0/2 represented in
red, ω0 in green, and 3ω0/2 in blue. Similarly, in (b), the phonon
coupling strengths are depicted as ω0 (red), 3ω0/2 (green), and 2ω0
(blue).(c),(d) Heatmaps gathered from MFE exciton-polarization
propagation over 0.242 ps, corresponding to highlighted points
in (Fig 2a). Panels (c) and (d) illustrate the phonon coupling
strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
ϖ0 = 3.2 eV.

twofold mystery and provides new microscopic insights into this
extraordinary phenomenon.

Fig. 2a-b presents the polariton group velocity obtained from
our analytical model (solid lines), comparing it to the group ve-
locities obtained by performing direct quantum dynamical simula-
tions (filled circles) at two di!erent phonon frequencies and vari-
ous phonon couplings. Fig. 2c-d presents time-dependent excitonic

density ϱn(t) = ↑↑#(t)|X̂†
nX̂n|#(t)↓↓MFE in the presence and in

the absence of phonon couplings. To perform these simulations, we
have prepared the initial exciton-polariton wavefunction as a lin-
ear combination of polariton states within an energy window $E

centered at an excitation energy E0, such that |#(0)↓ =
∑

cj |Ej↓

with E0↔$E/2 < Ej < E0+$E/2 and |Ej↓ as the eigenstates of

ĤEP . In both cases, we observe a ballistic propagation suggested
by the linear expansion of the wavefront in time, with the latter
propagating relatively slowly as the group velocities presented in
Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as

ĤX + Ĥlaser =
∑
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where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
targeting the subspace K, the population leaks out to the sub-
space M = 1 ↔ K via the phonon-induced scattering term

ω↓
2ε

∑
k,q X̂
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k+qX̂k(b̂q + b̂

†
→q). In contrast, inside an optical cav-

ity, following our analytical model in Eq. 13, a driven light-matter
hybrid system can be modeled as [55]

ĤLM + Ĥlaser = Ĥ
↔
F + E(t)

∑

k↑K
(â†k + âk)

↘

∑

k↑K

[
Ĥk + E(t)(â†k + âk)

]
+

∑

k↑M
Ĥk, (17)

such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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FIG. 2. Group velocities extracted from quantum dynamical simu-
lations (filled circles) compared to the predictions of the analytical
model (solid lines) introduced in this work, with phonon frequency
of (a) 1440 cm→1 and (b) 360 cm→1. In (a), the group velocities
for di!erent phonon coupling are plotted, with ω0/2 represented in
red, ω0 in green, and 3ω0/2 in blue. Similarly, in (b), the phonon
coupling strengths are depicted as ω0 (red), 3ω0/2 (green), and 2ω0
(blue).(c),(d) Heatmaps gathered from MFE exciton-polarization
propagation over 0.242 ps, corresponding to highlighted points
in (Fig 2a). Panels (c) and (d) illustrate the phonon coupling
strengths ranging from ω0/2 to 3ω0/2 for a phonon frequency of
1440 cm→1. (e) Exciton-polariton band structure from simulation
and theory with phonon coupling 2ω0 with similar parameters used
in (b). We used ω0 = 5.85 → 10→4 and 1.46 → 10→4 a.u. for figure
a and b respectively. Further we use ” = 3900 cm→1, N = 40001
for figure a and N = 30001 for figure b, ε = 0, ϑ0 = 2.58 eV, and
ϖ0 = 3.2 eV.

twofold mystery and provides new microscopic insights into this
extraordinary phenomenon.

Fig. 2a-b presents the polariton group velocity obtained from
our analytical model (solid lines), comparing it to the group ve-
locities obtained by performing direct quantum dynamical simula-
tions (filled circles) at two di!erent phonon frequencies and vari-
ous phonon couplings. Fig. 2c-d presents time-dependent excitonic

density ϱn(t) = ↑↑#(t)|X̂†
nX̂n|#(t)↓↓MFE in the presence and in

the absence of phonon couplings. To perform these simulations, we
have prepared the initial exciton-polariton wavefunction as a lin-
ear combination of polariton states within an energy window $E

centered at an excitation energy E0, such that |#(0)↓ =
∑

cj |Ej↓

with E0↔$E/2 < Ej < E0+$E/2 and |Ej↓ as the eigenstates of

ĤEP . In both cases, we observe a ballistic propagation suggested
by the linear expansion of the wavefront in time, with the latter
propagating relatively slowly as the group velocities presented in
Fig. 2a-b. We extract the group velocities from these wavefronts,
which are presented in Fig. 2a-b (filled circles) and are compared
to the predictions of our analytical model.

Overall, the results presented here clearly illustrate the appli-
cability of our analytical model and quasi-band structures intro-
duced here for understanding the polariton propagation. At higher
phonon frequencies, the vibronic structure in the dispersion directly
results in an oscillatory behavior in the group velocity with troughs
separated by the phonon frequency ϑ. At lower phonon frequen-
cies, such as in Fig. 2b, the oscillatory structure is almost absent as

the peaks in the analytical theory pack closer. Fig. 2e presents the
angle-resolved spectra at ϑ = 360 cm→1 where the vibronic peaks
are no longer visible due to the finite linewidth of the optical spec-
tra. Therefore, even though the vibronic structure is not visible in
polaritonic spectra, it results in a renormalization of the group ve-
locity. This phenomenon has been observed experimentally [18, 19],
with our theory providing a clear theoretical explanation.

In both scenarios, however, the observed group velocities are al-
ways lower, due to the formation of the polaron-polariton (quasi)
bands that have flatter slopes, due to the contribution of the flat ef-
fective exciton bands Ŷk,m, compared to the bare exciton-polariton
dispersion. This renormalization of the exciton-polariton group
velocity is induced by the presence of phonons in materials, and
even at low phonon frequencies, where the vibronic structure in
the angle-resolved spectra may be hidden due to various sources of
dissipation (such as cavity loss), the quasi-bands lead to the renor-
malization of the group velocity. Overall, our theoretical model
correctly captures the complex ballistic propagation of exciton-
polaritons in the presence of phonon interactions and introduces
a quasi-band picture that can be adopted to describe and under-
stand the coherent propagation of polaron-polaritons.

Importantly, our work also suggests a microscopic explana-
tion for the relatively long-lived coherent propagation of exciton-
polaritons with high exciton character [5, 18, 19, 32]. We hypothe-
size that the origin of this extraordinary e!ect is the block diagonal

nature of Eq. 12 where photon modes â†k couple to a particular set

of e!ective reciprocal (phonon-dressed) excitons Ŷk,m with match-
ing k, defined in Eq. 12. To clearly understand the ramifications of
this, consider first a bare excitonic system coupled with phonons
under laser driving E(t) that target a subspace K in reciprocal space
can be written as

ĤX + Ĥlaser =
∑
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where ςk = ς0 + 2ε cos(k · a) for choice of nearest neighbor in-
teractions made here. Importantly, despite a laser exclusively
targeting the subspace K, the population leaks out to the sub-
space M = 1 ↔ K via the phonon-induced scattering term
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∑
k,q X̂

†
k+qX̂k(b̂q + b̂

†
→q). In contrast, inside an optical cav-

ity, following our analytical model in Eq. 13, a driven light-matter
hybrid system can be modeled as [55]

ĤLM + Ĥlaser = Ĥ
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(â†k + âk)

↘

∑

k↑K

[
Ĥk + E(t)(â†k + âk)

]
+
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such that the subspace M and K now remain decoupled. There-
fore, light-matter interaction also plays a crucial role in suppressing
phonon-induced scattering in the reciprocal space, allowing for rel-
atively long-lived ballistic motion in the time scale of hundreds of
femtoseconds.

In summary, we developed a convenient theoretical framework
to understand and predict the angle-resolved polariton spectra in
the presence of phonon interactions. Starting from a microscopic
Hamiltonian describing the interactions between phonons, exci-
tons, and photons inside an optical cavity, we develop an analyti-
cal model that accurately predicts the complex angle-resolved po-
lariton spectra and the group velocities of coherently propagating
exciton-polaritons. We derive this analytical model by describ-
ing the phonons as time-periodic fields that are non-perturbatively
interacting with exciton-polaritons and quantize them using the
Floquet formalism that is typically used to describe laser-matter
interactions. Note that despite the classical treatment of phonons
within the mixed quantum-classical framework, the vibronic struc-
ture obtained is expected to be reasonably accurate given its success
in various model systems [44, 45, 56, 57]. We show that our theory
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S1 Details of the Quantum Dynamics Approach
We considered a light-matter Hamiltonian beyond long-wavelength approximation and with Holstein exciton-phonon coupling. This
Hamiltonian for N sites and M layers is given by

ĤEP =
∑

k

ωkX̂
†
k
X̂k + !k

(
X̂

†
k
âk +Xkâ

†
k

)
+ εkâ

†
k
âk =

∑

k

ĤEP(k)

P̂ =
∑

n

ϑX̂
†
n
X̂n

(
Rn(0)/2 + Pn(0)/2iε

)
(S1)

Rn(t) → Rn(0) cosεt+
1

ε
Pn(0) sinεt. (S2)

ĤLM ↑ ĤLM(t) = ĤEP + P̂ e
iωt + P̂

†
e
→iωt (S3)

Ŷ
†
k,m

=
∑

n

Qm0(Zn)↓
Sm

e
→ik·rnX̂†

n

(B̂†)m

m!
(S4)

ĤLM = Ĥex + Ĥphn + Ĥcav + Ĥex→phn + Ĥex-cav + Ĥloss (S5)

Where Ĥex, Ĥphn, and Ĥcav indicate the bare exciton, phonon, and cavity terms of Hamiltonian respectively,

Ĥex =
N∑

n

M∑

m

[
ω0X̂

†
n,m

X̂n,m ↔ ϖ

(
X̂

†
n+1,mX̂n,m + h.c.

)]
, Ĥphn =

∑

n,m

(
p̂
2
n,m

2
+

1

2
ε
2
q̂
2
n,m

)
, Ĥcav =

∑

k

εkâ
†
kâk (S6)

and Hex-phn and Hex-cav represents exciton-phonon and exciton-photon coupling terms, respectively

Ĥex→phn = ϑ

∑

n,m

q̂n,mX̂
†
n,m

X̂n,m, Ĥex-cav =
∑

n,m,k

!k↓
N

(
X̂

†
n,m

âke
ikxn + h.c.

)
sin(ky · ym) (S7)

where X̂†
n,m

create an exciton at site n and layer m, and â
†
k create cavity photons of wavevector k with transition frequency of εk = c

ε
|k|,

for c being the speed of light and ϱ = 2.4 is the medium restrictive index. In this work, we consider only two directions, i.e. x and y

such that k = kxςx + kyςy with y as the cavity quantization direction. Along the x direction we impose a periodic boundary condition,
effectively quantizing the kx = 2ϑny

N ·a where nx = 0,±1,±2, ... and consider primary cavity mode along the y direction such that
ky = ϑ

L
with L as the distance between the two reflective mirrors of the optical cavity. To simplify our notation, we denote k = kx and

label all photonic operators and related parameters with k, as ky is fixed, such that âk ↑ âk and εk = c

ε

√
k2
z
+ k2. Other parameters in

this Hamiltonian include ω0 being the excitonic on-site energy; ϑ, characterizes local (Holstein) exciton-phonon coupling constant; ϖ , is
the exciton hopping integral constant, and !k =

√
ω0
ωk

!0 (where !0 is the light-matter coupling constant) is the coupling strength with
the. The sites in each layer in our mode are aligned with x direction with a lattice spacing of a and layers are stacked parallel to each
other along the y direction with the inter-layer spacing of ay , therefore the spatial location of the exciton is Rn,m = xnςx+ ymςy.

In Eqs. S6 and S7, p̂n,m and q̂n,m are the momentum and position of the phonons with frequency ε. In our mixed-quantum-classical
method, we evolve phononic degrees of freedom (DOF) classically using Hamiltonian’s equation of motion, thus {p̂n,m, q̂n,m} ↑
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Simulations

• The polaron-polariton band may not show up in spectra
• The slopes of the polaron-polariton band dictates the group velocity
• This explains what has been observed in experiments

Our Analytical Theory
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FIG. 1. (a) Schematic 3-D model of exciton-polariton transport
within an optical cavity. (b) Exciton-polariton band structure from
simulation and theory with no phonon coupling, (c) with phonon
coupling ω0/2, (d) with phonon coupling ω0, (e) with phonon cou-
pling 3ω0/2, where ω0 is the phonon coupling. The parameter
ω0 = 5.85→ 10→4 a.u. Further we use ! = 3900 cm→1, N = 40001,
ε = 0, ϑ0 = 2.58 eV, and ϖ0 = 3.2 eV.

↑Â↓ ↔
〈
↑”(t)|Â|”(t)↓

〉
MFE

where ↑...↓MFE indicates averaging over
realizations of initial nuclear coordinates {Rn(0), Pn(0)}.

The angle-resolved optical spectra I(ϑ, k) can be obtained by
directly propagating the quantum dynamics to compute

I(ϑ, k) = lim
T↑↓

∫ T

0
dt e

iωt〈
↑1k|”(t)↓

〉
MFE

· cos(ϱt/2T ), (4)

where |”(0)↓ = â
†
k|0̄↓ = |1k↓. Note that we have added the term

cos(ϱt/2T ) to suppress spurious Gibbs oscillations. Our numeri-
cal result, presented in Fig.1, illustrates the emergence of complex
vibronic structure in the momentum-resolved polaritonic spectra
in the presence of phonon modes. As can be seen in these fig-
ures, despite the absence of a strict translational symmetry, the
angle-resolved spectra suggest the existence of a quasi-dispersion
of polaron-polaritons. Such vibronic structure in exciton-polariton
bands has been seen in recent experiments [46, 47]. Below, we de-
rive the analytical forms of these quasi-bands with details provided
in the Supporting Information.

To obtain an analytical expression for these polaron-polariton
(quasi) bands, we first make the classical path approximation [27,

48, 49], such that R̈n(t) ↔ ↗ϑ
2
Rn(t) with

Rn(t) ↔ Rn(0) cosϑt+
1

ϑ
Pn(0) sinϑt. (5)

With this analytical expression of Rn(t), the dynamics of the
exciton-polariton wavefunction |”↓ can be thought to be evolving
under the time-periodic Hamiltonian Ĥpl(t) expressed as

Ĥpl(t) = ĤEP + P̂ e
iωt + P̂

†
e
→iωt

, (6)

where P̂ =
∑

n ωX̂
†
nX̂nZn describes the interaction to a phonon

field with Zn = Rn(0)/2+Pn(0)/2iϑ and ĤEP as the pure exciton-
polariton Hamiltonian written as

ĤEP =
∑

n

X̂
†
nX̂nϖ0 + ε

∑

n

(X̂†
nX̂n+1 + X̂

†
n+1X̂n)

+
∑

k

â
†
kâkϑc(k) +

∑

n,k

!k
↘
N

[
â
†
kX̂ne

→ik·rn + âkX̂
†
ne

ik·rn
]
.

Notice the similarity between Ĥpl(t) and the typical laser-matter
Hamiltonian, with phonon degrees of freedom (or molecular vibra-
tions) in our system playing the same role as a laser field. We adapt
the Floquet formalism [50, 51] and rewrite Ĥpl(t) in an extended
space (so-called Sambe space) as a time-independent Hamiltonian
ĤF such that

Ĥpl(t) ≃⇐ ĤF = lim
M↑↓

∑

ij

PjĤFPi,

with Pi ⇒

{
X̂

†
n

(B̂†)M+m

√
(M +m)!

|0̄↓, â†k
(B̂†)M+m

√
(M +m)!

|0̄↓
}
. (7)

Here we have introduced the bosonic operator B̂ that creates an
excitation in the phononic field. Further, ĤF is expressed as

ĤF =
∑

n

(
ϖ0 ↗Mϑ +

ω
↘
M

(ZnB̂ + Z
↔
nB̂

†)
)
X̂

†
nX̂n

+ ε

∑

n

(X̂†
nX̂n+1 + X̂

†
n+1X̂n) + B̂

†
B̂ϑ +

∑

k

â
†
kâkϑc(k)

+
∑

n,k

!k
↘
N

(â†kX̂ne
→ik·rn + âkX̂

†
ne

ik·rn ). (8)

Next, we perform a polaron transformation on ĤF using the
operator ÛD defined as

ÛD =
∏

n

exp

[(
Z

↔
nB̂

†
↗ ZnB̂

)
ωX̂

†
nX̂n

ϑ
↘
M

]
(9)

to obtain Ĥ
↗
F = Û

†
DĤFÛD that is explicitly written as

Ĥ
↗
F =

∑

n

(ϖ0 ↗Mϑ)X̂†
nX̂n + B̂

†
B̂ϑ +

∑

k

â
†
kâkϑc(k) (10)

+ ε

∑

n


X̂

†
nX̂n+1 exp


ω
#ZnB̂ ↗#Z

↔
nB̂

†

ϑ
↘
M


+ h.c.



+
∑

n,k

!k
↘
N

(
â
†
kX̂n exp


ω(ZnB̂ ↗ Z

↔
nB̂

†)

ϑ
↘
M

↗ ik · rn


+ h.c.

)
,

where #Zn = Zn+1 ↗ Zn. To arrive at a simpler form
we further restrict our subspace such that Pi ⇒ S =

X̂

†
n

(B̂†)M+m
↘

(M+m)!
|0̄↓, â†k

(B̂†)M↘
M !

|0̄↓


with M ⇐ ⇑. That is, here we

only consider the reference excitation block, the Mth block, of
the phonon field for states with a single photon. Further, we

adapt the simplified notation |n,m↓ ⇓ limM↑↓ X̂
†
n

(B†)M+m
↘

(M+m)!
|0̄↓

and |1k↓ ⇓ limM↑↓ â
†
k
(B†)M↘

M !
|0̄↓ and obtain
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Coupling excitons with quantized radiation has been shown to enable coherent ballistic transport at room
temperature inside optical cavities. Previous theoretical works employ a simple description of the material,
depicting it as a single layer placed in the middle of the optical cavity, thereby ignoring the spatial variation
of the radiation in the cavity quantization direction. In contrast, in most experiments, the optical cavity is
filled with organic molecules or multilayered materials. Here, we develop an e!cient mixed-quantum-classical
approach, introducing a bright layer description, to simulate the exciton-polariton quantum dynamics. Our
simulations reveal that, for the same Rabi splitting, a multilayer material extends the quantum coherence
lifetime and enhances transport compared to a single-layer material. We find that this enhanced coherence
can be traced to a synchronization of phonon fluctuations over multiple layers, wherein the collective light-
matter coupling in a multilayered material e”ectively suppresses the phonon-induced dynamical disorder.

Introduction. Quantum coherence in the condensed phase
typically lasts tens of femtoseconds at room temperature, due to
phonon-induced decoherence intrinsic to the material itself [1].
Recent experiments have demonstrated that light-matter inter-
action inside optical cavities enables coherent quantum propa-
gation of exciton-polaritons (EP) by e”ectively shielding polari-
tons from phonon fluctuations [2–8]. Specifically, prior theoretical
works [2, 9–12], show that polaritons, which are part light and part
matter, couple to phonons more weakly compared to bare exci-
tons because only their matter component couples to the phonons,
which is partly responsible for the sustained coherence lifetime of
exciton-polaritons. In addition to this, our recent theoretical work
suggests that the light-matter interactions approximately restore
the phonon-induced translational symmetry breaking in materi-
als [8]. Overall, these works reveal that coupling cavity radiation
to materials provides tuning knobs for controlling phonon-induced
decoherence beyond the traditional paradigms of material synthe-
sis, paving the way for developing next-generation quantum de-
vices [13, 14].

However, these theoretical works adopt a simplified model sys-
tem that describes the material as a single layer placed at the center
of the optical cavity (see Fig. 1a). This is in contrast to most of the
experiments [2, 3, 5, 6, 15, 16] where the space between the reflec-
tive mirrors is filled with molecules or multiple layers of materials,
as schematically illustrated in Fig. 1b. Consequently, the density of
states in these two setups (i.e., multilayered vs. single-layered) are
drastically di”erent (see insets in Fig. 1c-d), with the multilayered
material featuring an ensemble of optically dark bands that are ab-
sent in a single-layered material when coupled to cavity. Therefore,
it is anticipated that the polariton quantum dynamics in these two
setups will di”er. However, the role of a multilayer configuration
in polaritonic quantum dynamics has remained unexplored, which
is the focus of this present work.

Simulating exciton-polariton dynamics in multilayered material
is an extremely challenging task, as the number of required unit
cells in a single layer exceeds → 104, thus requiring us to perform a
quantum dynamics simulation involving → 106 states for → 102 lay-
ers, typical in these systems. To resolve this fundamental challenge,
here we introduce an e!cient mixed quantum-classical approach
that uses a bright-layer description of the light-matter interaction
and propagates the dynamics utilizing a split-operator approach.
Using this convenient theoretical tool, we investigate the polari-
tonic quantum dynamics in multilayered materials. We discover
a phonon fluctuation synchronization e!ect where the exciton-
polaritons experience much lower phonon fluctuations and remain
coherent for a longer time. We show that this e”ect originates from
the delocalized nature of light-matter interactions, leading to an av-
eraging of phonon fluctuations and suppression of phonon-induced
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FIG. 1. Schematics and band structures of single-layer vs.

multilayer materials. Illustration of (a) a single layer material
and (b) multilayered material in an optical cavity, respectively.
The exciton-polariton band structures of (c) single-layer and (d)
multilayered materials in the absence of phonons (ω = 0). In a
multilayer setup, in addition to the polariton bands, an ensemble of
dark material bands exists. These dark bands increase the density
of states (DOS) near the onsite energy value, which are plotted as
insets within (c)-(d).

dynamic disorder. Here, we show that multilayered materials can
extend the exciton-polariton coherence lifetime, up to an order of
magnitude, and enhance exciton-polariton transport, which is rel-
evant for developing polariton-based quantum devices [5, 14, 17].

Theory. To explore the dynamics of exciton-polaritons formed
in multilayered materials, we consider a light-matter Hamiltonian
beyond the long-wavelength approximation [7, 15, 18–20], which
can be derived from the non-relativistic quantum electrodynamics
Hamiltonian in the Coulomb gauge [15, 21], written as (in atomic
units)

ĤLM = Ĥex + Ĥphn + Ĥcav + Ĥex↑phn + Ĥex-cav + Ĥloss , (1)

where Ĥex, Ĥphn and Ĥcav are the bare excitonic, phonon, and

cavity Hamiltonians, with Ĥex↑phn and Ĥex-cav describing the

Initial 
Excitation

Exciton-Polariton Dynamics in Multilayered Materials

Saeed Rahmanian Koshkaki,1, → Arshath Manjalingal,1 Logan Blackham,1 and Arkajit Mandal1, †

1
Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA

Coupling excitons with quantized radiation has been shown to enable coherent ballistic transport at room
temperature inside optical cavities. Previous theoretical works employ a simple description of the material,
depicting it as a single layer placed in the middle of the optical cavity, thereby ignoring the spatial variation
of the radiation in the cavity quantization direction. In contrast, in most experiments, the optical cavity is
filled with organic molecules or multilayered materials. Here, we develop an e!cient mixed-quantum-classical
approach, introducing a bright layer description, to simulate the exciton-polariton quantum dynamics. Our
simulations reveal that, for the same Rabi splitting, a multilayer material extends the quantum coherence
lifetime and enhances transport compared to a single-layer material. We find that this enhanced coherence
can be traced to a synchronization of phonon fluctuations over multiple layers, wherein the collective light-
matter coupling in a multilayered material e”ectively suppresses the phonon-induced dynamical disorder.

Introduction. Quantum coherence in the condensed phase
typically lasts tens of femtoseconds at room temperature, due to
phonon-induced decoherence intrinsic to the material itself [1].
Recent experiments have demonstrated that light-matter inter-
action inside optical cavities enables coherent quantum propa-
gation of exciton-polaritons (EP) by e”ectively shielding polari-
tons from phonon fluctuations [2–8]. Specifically, prior theoretical
works [2, 9–12], show that polaritons, which are part light and part
matter, couple to phonons more weakly compared to bare exci-
tons because only their matter component couples to the phonons,
which is partly responsible for the sustained coherence lifetime of
exciton-polaritons. In addition to this, our recent theoretical work
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als [8]. Overall, these works reveal that coupling cavity radiation
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tem that describes the material as a single layer placed at the center
of the optical cavity (see Fig. 1a). This is in contrast to most of the
experiments [2, 3, 5, 6, 15, 16] where the space between the reflec-
tive mirrors is filled with molecules or multiple layers of materials,
as schematically illustrated in Fig. 1b. Consequently, the density of
states in these two setups (i.e., multilayered vs. single-layered) are
drastically di”erent (see insets in Fig. 1c-d), with the multilayered
material featuring an ensemble of optically dark bands that are ab-
sent in a single-layered material when coupled to cavity. Therefore,
it is anticipated that the polariton quantum dynamics in these two
setups will di”er. However, the role of a multilayer configuration
in polaritonic quantum dynamics has remained unexplored, which
is the focus of this present work.

Simulating exciton-polariton dynamics in multilayered material
is an extremely challenging task, as the number of required unit
cells in a single layer exceeds → 104, thus requiring us to perform a
quantum dynamics simulation involving → 106 states for → 102 lay-
ers, typical in these systems. To resolve this fundamental challenge,
here we introduce an e!cient mixed quantum-classical approach
that uses a bright-layer description of the light-matter interaction
and propagates the dynamics utilizing a split-operator approach.
Using this convenient theoretical tool, we investigate the polari-
tonic quantum dynamics in multilayered materials. We discover
a phonon fluctuation synchronization e!ect where the exciton-
polaritons experience much lower phonon fluctuations and remain
coherent for a longer time. We show that this e”ect originates from
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FIG. 1. Schematics and band structures of single-layer vs.

multilayer materials. Illustration of (a) a single layer material
and (b) multilayered material in an optical cavity, respectively.
The exciton-polariton band structures of (c) single-layer and (d)
multilayered materials in the absence of phonons (ω = 0). In a
multilayer setup, in addition to the polariton bands, an ensemble of
dark material bands exists. These dark bands increase the density
of states (DOS) near the onsite energy value, which are plotted as
insets within (c)-(d).

dynamic disorder. Here, we show that multilayered materials can
extend the exciton-polariton coherence lifetime, up to an order of
magnitude, and enhance exciton-polariton transport, which is rel-
evant for developing polariton-based quantum devices [5, 14, 17].

Theory. To explore the dynamics of exciton-polaritons formed
in multilayered materials, we consider a light-matter Hamiltonian
beyond the long-wavelength approximation [7, 15, 18–20], which
can be derived from the non-relativistic quantum electrodynamics
Hamiltonian in the Coulomb gauge [15, 21], written as (in atomic
units)

ĤLM = Ĥex + Ĥphn + Ĥcav + Ĥex↑phn + Ĥex-cav + Ĥloss , (1)

where Ĥex, Ĥphn and Ĥcav are the bare excitonic, phonon, and

cavity Hamiltonians, with Ĥex↑phn and Ĥex-cav describing the
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