

Exploring quasi-relativistic DFT approaches in the simulation of resonant inelastic x-ray scattering maps

Daniel R. Nascimento
Assistant Professor of Chemistry and UMRF Research Professor
Department of Chemistry
The University of Memphis

Research in the Nascimento group

Can we characterize and tune the ability of a molecule to absorb, emit, or scatter light?

DRN and DePrince JCTC 2016, 12, 12, 5834-584.

https://chemicalengineeringmatters.wordpress.com

Perfetto et al. JPCL 2018, 9, 6, 1353-1358

Radiative Core-Level Processes

Resonant Inelastic X-ray Scattering (RIXS)

Probing the nature of the frontier orbitals in TM complexes:

$$\begin{bmatrix} \text{Cu}(\text{mnt})_2 \end{bmatrix}^{2^-} \\ \begin{bmatrix} \text{Cu}(\text{mnt})_2 \end{bmatrix}^{-2^-} \\ \begin{bmatrix} \text{Ni}(\text{mnt})_2 \end{bmatrix}^{-2^-} \\ \end{bmatrix} \begin{bmatrix} \text{Ni}(\text{mnt})_2 \end{bmatrix}^{-2^-} \\ \begin{bmatrix} \text{Ni}(\text{mnt})_2 \end{bmatrix}^{-2^-} \\ \end{bmatrix} \begin{bmatrix} \text{N$$

Metal Dithiolenes

- Non-innocent ligand
- Frontier orbitals have dominant
 S 3p orbital character.

Important RIXS Characteristics:

- Atomic specificity
- Sensitivity to the local environment
- Resolution does not depend on core-hole lifetime

The RIXS cross-section: Kramers-Heisenberg formula

For randomly oriented molecules and a minimal elastic scattering angle:

$$S(\omega,\omega-\omega') = \frac{\omega'}{\omega} \sum_{fn} \sum_{\xi\xi'} \frac{1}{30} \left| \left[4 \left(S_{fn}^{\xi\xi'} \right)^2 - S_{fn}^{\xi\xi} S_{fn}^{\xi'\xi'} - S_{fn}^{\xi\xi'} S_{fn}^{\xi'\xi} \right] \right| \Delta(\omega,\omega-\omega')$$

$$Amplitudes: S_{fn}^{\xi\xi'} = \langle f | \hat{\mu}_{\xi} | n \rangle \langle n | \hat{\mu}_{\xi'} | 0 \rangle$$

Challenge: To efficiently compute excited-state transition moments for large excited-state manifolds (500+ states), incorporating scalar-relativistic and spin-orbit effects.

Proposed Solution: Begin with linear-response time-dependent density-functional theory (TDDFT) and build complexity as needed and in the simplest way possible.

Part 1: Excited-state transition dipole moments

Assume that excited-state wavefunctions can be constructed with TDDFT/TDA solution vectors:

$$|n\rangle \approx \sum_{ia} X_{ia}^n \hat{a}_a^\dagger \hat{a}_i |0\rangle$$
 with $AX = \omega X$ and $A_{iajb} = (\epsilon_a - \epsilon_i) \delta_{ij} \delta_{ab} + (ia|bj) - \alpha(ij|ba) + f_{iabj}^{xc}$

then

 $\langle n|\hat{\mu}_{\xi'}|0\rangle \approx \sum_{ia} X_{ia}^n \mu_{ia}^{\xi'}$ and $\langle f|\hat{\mu}_{\xi'}|n\rangle \approx \sum_{ia} X_{ia}^f \left(\sum_b \mu_{ab}^{\xi'} X_{ib}^n - \sum_i X_{ja}^n \mu_{ji}^{\xi'}\right)^{tr}$

Unrelaxed second-order transition densities

Using the core-valence separation (CVS) technique, all we need is to perform two separate TDDFT/TDA calculations. One for each excited-state manifold.

Part 1: Excited-state transition dipole moments

Successful examples:

2p4d RIXS of Ru Complexes

Biasin et al. Chem. Sci. 2021, 12, 3713-3725

2DES maps of Perylene Bisimide

Segatta et al. J. Chem. Theory Comput. 2021, 17, 11, 7134-7145

Reference: Kohn-Sham (KS) → Dirac-Kohn-Sham (DKS)

The Zeroth-Order Regular Approximation (ZORA):

Reference: Kohn-Sham (KS) → ZORA-Kohn-Sham (ZKS)

$$\hat{h}_{ZKS} = \frac{\boldsymbol{p}^2}{2} + \boldsymbol{p} \left(\frac{\kappa - 1}{2} \right) \boldsymbol{p} + \frac{\kappa^2}{4c^2} \boldsymbol{\sigma} \cdot (\boldsymbol{\nabla} v^{KS} \times \boldsymbol{p}) + v^{KS}, \qquad \kappa = \left(1 - \frac{v^{KS}}{2c^2} \right)^{-1}$$
Kinetic Energy
Scalar Correction

Following van Wüllen and coworkers, J. Chem. Phys. 1998, 109, 2:

$$\hat{h}_{ZKS} = \frac{\boldsymbol{p}^2}{2} + \boldsymbol{p} \left(\frac{\tilde{\boldsymbol{\kappa}} - 1}{2} \right) \boldsymbol{p} + \frac{\tilde{\boldsymbol{\kappa}}^2}{4c^2} \boldsymbol{\sigma} \cdot (\boldsymbol{\nabla} \tilde{\boldsymbol{v}} \times \boldsymbol{p}) + v^{KS}, \qquad \tilde{\boldsymbol{\kappa}} = \left(1 - \frac{\tilde{\boldsymbol{v}}}{2c^2} \right)^{-1}$$

 \tilde{v} is an atom-centered spherical potential built from a model density that reproduces the DKS density.

Reproducing SO splittings for d⁰ TM cations: ZKS Spinors

SO splittings obtained with different Hamiltonians for a set of d^0 transition metal cations. First row: 2p, Second row: 3p and 3d, Third row: 4d. Calculations performed with the PBEO functional and Dyall DZP basis.

State-Interaction (SI) Approach:

$$\hat{h}_{ZKS} = \hat{h}_{SR} + \hat{h}_{SO}$$

$$\hat{h}_{SR} = \frac{\boldsymbol{p}^2}{2} + \boldsymbol{p} \left(\frac{\tilde{\kappa} - 1}{2} \right) \boldsymbol{p} + v^{KS}$$

$$\hat{h}_{SO} = \frac{\tilde{\kappa}^2}{4c^2} \boldsymbol{\sigma} \cdot (\boldsymbol{\nabla} \tilde{v} \times \boldsymbol{p})$$

Solve $A_{SR}X_{SR} = \omega_{SR}X_{SR}$ for the desired manifolds

Generalized

Then, project \hat{h}_{SO} onto a selected states (usually a fraction of the full manifold):

$$(X_{SR}^T \hat{h}_{SO} X_{SR} + \omega_{SR} \Delta) Z_{SO} = \Xi_{SO} Z_{SO}$$

SO splitting of excitation energies:

- 1) DKS \rightarrow TDA (very expensive, 128 RKS)
- 2) amfX2C-KS \rightarrow TDA (expensive, 32 RKS)
- 3) $1eX2C-KS \rightarrow TDA$ (expensive, 32 RKS)
- 4) Full ZKS \rightarrow Scaled CIS (expensive, 32 RKS)
- 5) SR-ZKS \rightarrow TDA \rightarrow SI-SOC (cheap, 1 RKS)
- 6) SR-ZKS \rightarrow Scaled CIS \rightarrow SI-SOC (cheaper)

Sarah Pak (PhD 2025)

Pak et al. JCP, 2025, **163**, 094110

Soft x-ray edge splittings obtained with different Hamiltonians for a set of d^0 transition metal cations. First row: $L_{2,3}(2p \to 3d)$, Second row: $M_{2,3}(3p \to 4d)$, and $M_{4,5}(3d \to 5p)$, Third row: $N_{4,5}(4d \to 6p)$.

Cyanometallates XAS:

XAS of cyanometallates calculated with the SR-ZKS/SCIS+SO (SR-ZKS) and mmfX2C/DR-TDDFT (SO-X2C) methods.

Functional: PBE0

Basis Set: Dyall DZP

Broadening: 1.5 eV.

First row: $L_{2,3}$ edge

Second row: $M_{2,3}$ and $M_{4,5}$ edges

Third row: N_{4,5} edge

Sarah Pak (PhD 2025)

Pak et al. JCP, 2025, 163, 094110

Application: 2p3d RIXS of $[Ru(CN)_6]^{4-}$

Muhammed Dada (3rd-year PhD)

Application: 2p3d RIXS of $[Ru(CN)_6]^{4-}$

Application: 2p3d RIXS of $[Ru(CN)_6]^{4-}$

Constant Energy Cut

Muhammed Dada (3rd-year PhD)

Application: 2p3d RIXS of $[Ru(bpy)_3]^{2+}$

Muhammed Dada (3rd-year PhD)

Application: 2p3d RIXS of $[Ru(bpy)_3]^{2+}$

Muhammed Dada (3rd-year PhD)

2p3d RIXS of $[Ru(tpy)(bpy)(\mu-CN)Ru(bpy)_2(CH_3CN)]^{3+}$

Muhammed Dada (3rd-year PhD)

2000 roots SR-ZKS/TDA+SO, B3LYP-D3, Sapporo-DKH3-TZP-2012 (Ru) + 3-21G* (C,N) + STO-3G (H). **Experimental data from:** Khalil Group (University of Washington) – Article in preparation

$2p3d\ RIXS\ of\ [Ru(tpy)(bpy)(\mu-CN)Ru(bpy)_2(CH_3CN)]^{3+}$

UV Pump/X-ray Probe

Experimental data from: Khalil Group (University of Washington) – Article in preparation

2p3d RIXS of [Ru(tpy)(bpy)(μ -CN)Ru(bpy) $_2$ (CH $_3$ CN)] $^{3+}$

UV Pump/X-ray Probe

2000 roots SR-ZKS/TDA+SO, B3LYP-D3, Sapporo-DKH3-TZP-2012 (Ru) + 3-21G* (C,N) + STO-3G (H). **Experimental data from:** Khalil Group (University of Washington) – Article in preparation

Concluding Remarks

We developed a cost-effective protocol to simulate RIXS maps of transition metal complexes. The protocol is built on 3 key ideas:

- Excited-state transition moments can be calculated using linear-response TDDFT amplitudes, thus neglecting second-order relaxation effects;
- The exchange-correlation kernel doesn't significantly affect the quality of the simulated spectra, and thus, can be neglected;
- Excited-state spin-orbit couplings can be incorporated for a subset of excited states using an effective ZORA potential and the state-interaction approach;

Experimental RIXS maps are well reproduced by the simulations, and ground-state molecular orbitals can be used to gain qualitative understanding of possible RIXS pathways.

Acknowledgments

Current Members:

Muhammed Dada (GS) Matthew Ward (GS) Brinton Eldridge (GS) Nathaniel Gillispie (GS)

Past Members:

Dr. Sarah Pak (PhD) Dr. Megan Simons (PD) Jake Wilkinson (UG) Mason Weiss (UG) Tim Le (UG)

CAREER CHE-2337902 CSSI OAC-2410878

Collaborators:

Dr. Elisa Biasin (PNNL)

Dr. Amy Cordones (SLAC)

Dr. Ben Poulter (SLAC)

Prof. Munira Khalil (U. Washington)

Dr. Niri Govind (PNNL)

Thank you!