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Resonant Inelastic X-ray Scattering (RIXS)
Probing the nature of the frontier orbitals in TM complexes:

Larsen et al. J. Am. Chem. Soc. 2024, 146, 41, 28561-28571
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Important RIXS Characteristics:
• Atomic specificity
• Sensitivity to the local environment
• Resolution does not depend on core-hole lifetime

Metal Dithiolenes
• Non-innocent ligand
• Frontier orbitals have dominant 

S 3p orbital character.
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The RIXS cross-section: Kramers-Heisenberg formula
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For randomly oriented molecules and a minimal elastic scattering angle:
Line Shape

Challenge: To efficiently compute excited-state transition moments for large 
excited-state manifolds (500+ states), incorporating scalar-relativistic and spin-orbit 
effects.

Amplitudes: 𝑆𝑆𝑓𝑓𝑓𝑓
𝜉𝜉𝜉𝜉′ = ⟨𝑓𝑓|𝜇̂𝜇𝜉𝜉|𝑛𝑛⟩⟨𝑛𝑛|𝜇̂𝜇𝜉𝜉′|0⟩

Proposed Solution: Begin with linear-response time-dependent density-functional 
theory (TDDFT) and build complexity as needed and in the simplest way possible.
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Part 1: Excited-state transition dipole moments
Assume that excited-state wavefunctions can be constructed with TDDFT/TDA 
solution vectors:
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Unrelaxed second-order 
transition densities

𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜖𝜖𝑎𝑎 − 𝜖𝜖𝑖𝑖 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑎𝑎𝑎𝑎 + 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏 − 𝛼𝛼 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥

DRN et al. JCTC 2021, 17, 5, 3031–3038
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† �𝑎𝑎𝑖𝑖|0⟩ 

Using the core-valence separation (CVS) technique, all we need is to perform two 
separate TDDFT/TDA calculations. One for each excited-state manifold.

with

then

and

and
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Part 1: Excited-state transition dipole moments
Successful examples:

Biasin et al. Chem. Sci. 2021, 12, 3713-3725 Segatta et al. J. Chem. Theory Comput. 2021, 17, 11, 7134-7145

2p4d RIXS of Ru Complexes 2DES maps of Perylene Bisimide
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Part 2: Incorporating relativistic effects
Reference: Kohn-Sham (KS) → Dirac-Kohn-Sham (DKS)

Exact two-component (X2C) 
Regular Approximations (RA)
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Part 2: Incorporating relativistic effects
The Zeroth-Order Regular Approximation (ZORA):

Reference: Kohn-Sham (KS) → ZORA-Kohn-Sham (ZKS)
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Kinetic Energy
Scalar Correction

Spin-Orbit

Following van Wüllen and coworkers, J. Chem. Phys. 1998, 109, 2:
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�𝑣𝑣 is an atom-centered spherical potential built from a model density that reproduces 
the DKS density. 
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Part 2: Incorporating relativistic effects
Reproducing SO splittings for d0 TM cations: ZKS Spinors

SO splittings obtained with different Hamiltonians for a set of d0 transition metal cations. First row: 2p, Second 
row: 3p and 3d, Third row: 4d. Calculations performed with the PBE0 functional and Dyall DZP basis.

Sarah Pak
(PhD 2025)

Pak et al. JCP, 2025, 163, 094110 
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Part 2: Incorporating relativistic effects
State-Interaction (SI) Approach:

Pak et al. JCP, 2025, 163, 094110; Franco de Carvalho et al. JCP, 2014, 140, 144103; Roemelt et al. JCP, 2013, 138, 204101. 
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Solve 𝐴𝐴𝑆𝑆𝑆𝑆𝑋𝑋𝑆𝑆𝑆𝑆 = 𝜔𝜔𝑆𝑆𝑆𝑆𝑋𝑋𝑆𝑆𝑆𝑆 for the desired manifolds

Then, project �ℎ𝑆𝑆𝑆𝑆 onto a selected states (usually a fraction of the full manifold):

𝑋𝑋𝑆𝑆𝑆𝑆𝑇𝑇 �ℎ𝑆𝑆𝑆𝑆𝑋𝑋𝑆𝑆𝑆𝑆 + 𝜔𝜔𝑆𝑆𝑆𝑆Δ 𝑍𝑍𝑆𝑆𝑆𝑆 = Ξ𝑆𝑆𝑆𝑆𝑍𝑍𝑆𝑆𝑆𝑆
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Part 2: Incorporating relativistic effects
SO splitting of excitation energies:

Soft x-ray edge splittings obtained with different Hamiltonians for a set of d0 transition metal cations. First row: 
L2,3(2p → 3d), Second row: M2,3(3p → 4d), and M4,5(3d → 5p),  Third row: N4,5(4d → 6p).

Sarah Pak
(PhD 2025)

Pak et al. JCP, 2025, 163, 094110 

1) DKS → TDA (very expensive, 128 RKS)

2) amfX2C-KS → TDA (expensive, 32 RKS)

3) 1eX2C-KS → TDA (expensive, 32 RKS)

4) Full ZKS → Scaled CIS (expensive, 32 RKS)

5) SR-ZKS → TDA → SI-SOC (cheap, 1 RKS)

6) SR-ZKS → Scaled CIS → SI-SOC (cheaper)
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Part 2: Incorporating relativistic effects
Cyanometallates XAS:

XAS of cyanometallates calculated with the SR-
ZKS/SCIS+SO (SR-ZKS) and mmfX2C/DR-TDDFT 
(SO-X2C) methods. 

Functional: PBE0
Basis Set: Dyall DZP
Broadening:  1.5 eV. 

First row: L2,3 edge
Second row: M2,3 and M4,5 edges
Third row: N4,5 edge

Sarah Pak
(PhD 2025)

Pak et al. JCP, 2025, 163, 094110 
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Application: 2p3d RIXS of [Ru(CN)6]4-

Muhammed 
Dada

(3rd-year PhD)

2𝑝𝑝3/2 → 𝑒𝑒𝑔𝑔(4𝑑𝑑) 2𝑝𝑝3/2 → 𝜋𝜋𝐿𝐿∗

3𝑑𝑑3/2 → 𝑒𝑒𝑔𝑔 4𝑑𝑑 ,𝜋𝜋𝐿𝐿∗

3𝑑𝑑5/2 → 𝑒𝑒𝑔𝑔 4𝑑𝑑 ,𝜋𝜋𝐿𝐿∗

ΔM4,5

Simulation Experiment

300 roots SR-ZKS/TDA+SO, B3LYP, Sapporo-DKH3-TZP-2012 (Ru) + 6-311G** (C,N,H). Shift (+40.5 eV, +7.1 eV).
Experimental data from: Khalil Group (University of Washington)
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Application: 2p3d RIXS of [Ru(CN)6]4-

Muhammed 
Dada

(3rd-year PhD)

2𝑝𝑝3/2 → 𝑒𝑒𝑔𝑔(4𝑑𝑑) 2𝑝𝑝3/2 → 𝜋𝜋𝐿𝐿∗

3𝑑𝑑3/2 → 𝑒𝑒𝑔𝑔 4𝑑𝑑 ,𝜋𝜋𝐿𝐿∗

3𝑑𝑑5/2 → 𝑒𝑒𝑔𝑔 4𝑑𝑑 ,𝜋𝜋𝐿𝐿∗

ΔM4,5

Simulation Simulation without SOC

3𝑑𝑑 → 𝑒𝑒𝑔𝑔 4𝑑𝑑
𝑒𝑒𝑔𝑔 4𝑑𝑑 ← 2𝑝𝑝

300 roots SR-ZKS/TDA+SO, B3LYP, Sapporo-DKH3-TZP-2012 (Ru) + 6-311G** (C,N,H). Shift (+40.5 eV, +7.1 eV).
Experimental data from: Khalil Group (University of Washington)
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Application: 2p3d RIXS of [Ru(CN)6]4-

Muhammed 
Dada

(3rd-year PhD)

2𝑝𝑝3/2 → 𝑒𝑒𝑔𝑔(4𝑑𝑑) 2𝑝𝑝3/2 → 𝜋𝜋𝐿𝐿∗

3𝑑𝑑3/2 → 𝑒𝑒𝑔𝑔 4𝑑𝑑 ,𝜋𝜋𝐿𝐿∗

3𝑑𝑑5/2 → 𝑒𝑒𝑔𝑔 4𝑑𝑑 ,𝜋𝜋𝐿𝐿∗

ΔM4,5

Simulation Constant Energy Cut

300 roots SR-ZKS/TDA+SO, B3LYP, Sapporo-DKH3-TZP-2012 (Ru) + 6-311G** (C,N,H). Shift (+40.5 eV, +7.1 eV).
Experimental data from: Khalil Group (University of Washington)
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Application: 2p3d RIXS of [Ru(bpy)3]2+

Muhammed 
Dada

(3rd-year PhD)

300 roots SR-ZKS/TDA+SO, B3LYP, Sapporo-DKH3-TZP-2012 (Ru) + 6-311G** (C,N,H). Shift (+40.5 eV, +7.1 eV).
Experimental data from: Khalil Group (University of Washington)

2𝑝𝑝3/2 → 𝑒𝑒𝑔𝑔(4𝑑𝑑)

3𝑑𝑑3/2 → 𝑒𝑒𝑔𝑔 4𝑑𝑑

3𝑑𝑑5/2 → 𝑒𝑒𝑔𝑔 4𝑑𝑑

ΔM4,5

Simulation Experiment
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Application: 2p3d RIXS of [Ru(bpy)3]2+

Muhammed 
Dada

(3rd-year PhD)

300 roots SR-ZKS/TDA+SO, B3LYP, Sapporo-DKH3-TZP-2012 (Ru) + 6-311G** (C,N,H). Shift (+40.5 eV, +7.1 eV).
Experimental data from: Khalil Group (University of Washington)

2𝑝𝑝3/2 → 𝑒𝑒𝑔𝑔(4𝑑𝑑)

3𝑑𝑑3/2 → 𝑒𝑒𝑔𝑔 4𝑑𝑑

3𝑑𝑑5/2 → 𝑒𝑒𝑔𝑔 4𝑑𝑑

ΔM4,5

Simulation Constant Energy Cut
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2p3d RIXS of [Ru(tpy)(bpy)(μ-CN)Ru(bpy)2(CH3CN)]3+

Muhammed 
Dada

(3rd-year PhD)

2000 roots SR-ZKS/TDA+SO, B3LYP-D3, Sapporo-DKH3-TZP-2012 (Ru) + 3-21G* (C,N) + STO-3G (H). 
Experimental data from: Khalil Group (University of Washington) – Article in preparation

Simulation

3𝑑𝑑5/2 →?

3𝑑𝑑3/2 →?
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2p3d RIXS of [Ru(tpy)(bpy)(μ-CN)Ru(bpy)2(CH3CN)]3+

Experimental data from: Khalil Group (University of Washington) – Article in preparation

UV Pump/X-ray Probe

UV

𝑆𝑆0 → 𝑆𝑆1 → 𝑇𝑇1
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2p3d RIXS of [Ru(tpy)(bpy)(μ-CN)Ru(bpy)2(CH3CN)]3+

2000 roots SR-ZKS/TDA+SO, B3LYP-D3, Sapporo-DKH3-TZP-2012 (Ru) + 3-21G* (C,N) + STO-3G (H). 
Experimental data from: Khalil Group (University of Washington) – Article in preparation

UV Pump/X-ray Probe

Muhammed 
Dada

(3rd-year PhD)

X-Ray X-Ray

𝑆𝑆0 𝑇𝑇1
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Concluding Remarks
We developed a cost-effective protocol to simulate RIXS maps of transition metal 
complexes. The protocol is built on 3 key ideas:

• Excited-state transition moments can be calculated using linear-response TDDFT amplitudes, thus 
neglecting second-order relaxation effects;

• The exchange-correlation kernel doesn’t significantly affect the quality of the simulated spectra, and 
thus, can be neglected;

• Excited-state spin-orbit couplings can be incorporated for a subset of excited states using an effective 
ZORA potential and the state-interaction approach;

Experimental RIXS maps are well reproduced by the simulations, and ground-state 
molecular orbitals can be used to gain qualitative understanding of possible RIXS 
pathways.
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