Memory Kernel Coupling Theory to Spin-Phonon Relaxation in Molecular Qubits

Wenjie Dou

Westlake University

VISTA, Sep. 3, 2025

Outline

- Background
 - Molecular qubits
 - Phenomenological results and microscopic model
- Nonlinear couplings
 - Exact dynamics: memory kernel coupling theory
 - Linear and quadratic couplings
- Spin-polaron model
 - Experimental results for ZnHOTP
 - New mechanism for spin-lattice relaxation

Outline

- Background
 - Molecular qubits
 - Phenomenological results and microscopic model
- Nonlinear couplings
 - Exact dynamics: memory kernel coupling theory
 - Linear and quadratic couplings
- Spin-polaron model
 - Experimental results for ZnHOTP
 - New mechanism for spin-lattice relaxation

Materials Challenges for QT 2.0

Quantum bit (qubit), the fundamental unit of QT 2.0*

Hypothetically, any (quasi) two-level system can be a qubit. Why challenging?

^{*} it is also possible, and practical, to use multi-state quantum bits, commonly known as qudits

Electron spin qubits

Defect spin qubit

Advantages: room-temperature coherence

Nature **455**, 648–651 (2008)

Disadvantages: lack designability and tunability

ACS Photonics 7, 2147–2152 (2020)

Phys. Rev. B 95, 161201(2017)

Molecular qubit

Spin center: Metal ions

Chem. Mater. 29, 1885-1897 (2017)

J. Am. Chem. Soc. 144, 19008-19016 (2022)

Spin center: organic radical

Trityl-CH₃

J. Am. Chem. Soc. 144, 19008-19016 (2022)

Relaxation time

Spin–lattice relaxation time (T_1)

Decoherence time (T_2)

Chem. Eur. J. 27, 9482-9494 (2021)

Spin-phonon relaxation

Phonon modes

J. Magn. Reson. 139, 165–174 (1999)

Nature **557**, 691-695 (2018)

Chem. Sci. 13, 7034-7045 (2022)

Problems

- The applicable conditions of the formula
- Too many parameters cause overfitting
- Often it's simulation rather than fit Simulation will fix some parameters but fit not
- Phonons include acoustic phonons and optical phonons

$$\frac{1}{T_1} = A_{dir}T + A_{Ramn}T^m$$

Spin-phonon relaxation

Spin relaxation mechanism

The equation of typical spin relaxation mechanisms

Acoustic

Mechanism	Equation		
Direct	$A_{Dir}B^4 \frac{e^{\hbar\omega/k_BT}}{e^{\hbar\omega/k_BT}-1}$ Field		
Raman	$A_{Ram} \left(\frac{T}{\theta_D}\right)^9 \int_0^{\frac{\theta_D}{T}} x^8 \frac{e^x}{(e^x - 1)^2} dx \text{ (sometimes } A_{Ram} T^m \text{ with } m = 2 - 9)$		
Orbach	$A_{Orb} \frac{\Delta^3}{e^{\Delta/k_BT} - 1}$ Electronic state		
Local mode	$A_{loc} \frac{e^{\hbar \omega_{phonon}/k_B T}}{\left(e^{\hbar \omega_{phonon}/k_B T} - 1\right)^2} \text{Optical}$		
Thermally activated	$A_{therm} rac{2 au_c^0 e^{E_a} k_B T}{1 + \omega^2 au_c^0^2 e^{2E_a/k_B T}} $		
Tumbling-dependent	$\frac{\sum_{i=x,y,z} (g_i - g_e)^2}{9\tau_R} + \frac{2}{5} \left(\frac{\mu_{B\omega}}{g\beta}\right)^2 \left\{\frac{(\Delta g)^2}{3} + (\delta g)^2\right\} J(\omega) \text{Anisotropy}$ $+ \frac{2}{9} I(I+1) \sum_i (A_i - a_{iso})^2 J(\omega) + C_{solvent} \frac{\tau_{solvent}}{1 + (\omega \tau_{solvent})^2}$		
Cross relaxation	constant (temperature-independent) Concentration		

T: temperature; B: magnetic field strength; ω : Larmor frequency; Θ_D : Debye temperature; Δ : energy of low -lying excited state; ω_{phonon} : energy of local phonon mode. τ_c^0 : pre-exponential factor; E_a : activation energy; g_i : principle g value along the i axis; g_e : g

value of free electron; τ_R : tumbling correlation time; μ_B : Bohr magneton; $\Delta g = g_{zz} - 0.5(g_{xx} + g_{yy}); \ \delta g = 0.5(g_{xx} - g_{yy}); \ J(\omega) = \frac{\tau_R}{1 + (\omega \tau_R)^2}; \ I$:

nuclear spin; A_i : principle component of the nuclear hyperfine constant along the i axis in angular frequency units; a_{iso} : the isotropic nuclear hyperfine constant; $\tau_{solvent}$: correlation time for motion of the solvent relative to the radical; $C_{solvent}$: a function of the dipolar interaction with solvent nuclei. A_{Dir} , A_{Ram} , A_{Orb} , A_{loc} , A_{therm} are pre-factors.

Optical

The spin-lattice interaction: collective phonon

Hamiltonian for an unperturbed spin in magnetic field

$$H_{
m s}=g\mu_{
m B}B\sigma_z$$
 f
Diagonal g-factor g_{zz}

Each ion
$$j$$
 has equilibrium $r_j^{(0)}$ and a small displacement Q_j
$$H_{\text{s-ph}} = \mu_{\text{B}} B g_{\text{xz}}(r) \sigma_{\text{x}} \quad r_j = r_j^{(0)} + Q_j \quad g_{\text{xz}}(r) = g_{\text{xz}}^0 + \sum_j Q_j \frac{\partial g_{\text{xz}}(r)}{\partial Q_j} + \sum_{jl} Q_j Q_l \frac{\partial^2 g_{\text{xz}}(r)}{\partial Q_j \partial^2 Q_l} + \dots$$

Suppose collective vibration at each ionic site are

$$egin{align} Q_j &= \hat{x}_{ extsf{B}} = \sum_k rac{c_k}{\sqrt{2}} (\hat{b}_k^\dagger + \hat{b}_k) \ H_{ extsf{ph}} &= \sum_k \hbar \omega_k (\hat{b}_k^\dagger \hat{b}_k + rac{1}{2}) = \sum_k rac{1}{2} \hbar \omega (\hat{q}_k^2 + \hat{p}_k^2) \ \end{pmatrix}$$

Collective phonon mode: the spectral density function

$$H_{\mathsf{ph}} = \sum_{k} rac{1}{2} \hbar \omega (\hat{q}_{k}^{2} + \hat{p}_{k}^{2})$$

The lattice phonons

$$^{\circ}$$
 OH $^{\circ}$ $^{\circ}$ OH $^{\circ}$ OH

$$H_{
m s} = g \mu_{
m B} B \sigma_z$$

Diagonal g-factor g_{zz}

The collective vibration is characterized by the spectral density

$$\hat{x}_{ extsf{B}} = \sum_{k} rac{c_{k}}{\sqrt{2}} (\hat{b}_{k}^{\dagger} + \hat{b}_{k})$$
 k -th mode's weight $J(\omega \geq 0) = rac{\pi}{2} \sum_{k} c_{k}^{2} \delta(\omega - \omega_{k}) = -J(-\omega).$

The spectral density

Outline

- Background
 - Molecular qubits
 - Phenomenological results and microscopic model
- Nonlinear couplings
 - Exact dynamics: memory kernel coupling theory
 - Linear and quadratic couplings
- Spin-polaron model
 - Experimental results for ZnHOTP
 - New mechanism for spin-lattice relaxation

Memory kernel coupling theory

Open quantum systems

Mori projection

$$\dot{C}_{\mu\mu}(t) = {}^{\Omega}C_{\mu\mu}(t) + \int_0^t \mathrm{d}\tau K(\tau)C_{\mu\mu}(t-\tau)$$

(memory kernel)

$$K(t) = \langle i\mathcal{L}\hat{f}(t), \hat{\mu}(0) \rangle \langle \hat{\mu}(0), \hat{\mu}(0) \rangle^{-1}$$

Definition of TCFs

$$C_{\mu\mu}(t) \equiv \langle \hat{\mu}(t)\hat{\mu}(0)\rangle = \text{Tr}[\hat{\mu}(0)e^{-i\mathcal{L}t}(\hat{\mu}(0)\rho_{eq})]$$

Define:
$$\mathcal{P}\hat{O}(t) = \frac{\langle \hat{O}(t), \hat{\mu}(0) \rangle}{\langle \hat{\mu}(0), \hat{\mu}(0) \rangle} \hat{\mu}(0); \quad Q = I - \mathcal{P}$$

(random force)

$$\hat{f}(t) = e^{it(1-\mathcal{P})\mathcal{L}}(1-\mathcal{P})i\mathcal{L}\hat{\mu}(0)$$

(moment)

$$\Omega = \langle i \mathcal{L} \hat{\mu}(0), \hat{\mu}(0) \rangle \langle \hat{\mu}(0), \hat{\mu}(0) \rangle^{-1}$$

Memory kernel coupling theory

$$\dot{C}_{\mu\mu}(t) = \Omega C_{\mu\mu}(t) + \int_0^t d\tau K(\tau) C_{\mu\mu}(t-\tau)$$

Define:
$$\Omega_n = \langle (i\mathcal{L})^n \hat{\mu}, \hat{\mu} \rangle \langle \hat{\mu}, \hat{\mu} \rangle^{-1}$$

$$K_n(t) = \langle (i\mathcal{L})^n \hat{\mu} \hat{f}(t), \hat{\mu} \rangle \langle \hat{\mu}, \hat{\mu} \rangle^{-1}$$

$$K_n(0) = \Omega_{n+1} - \Omega_n \ \Omega_1$$

$$K_n(0) = \Omega_{n+1} - \Omega_n \Omega_1 \qquad \dot{K}_n(t) = K_{n+1}(t) - \Omega_n K_1(t)$$

$$\mathcal{L}_K = \begin{pmatrix} -\Omega_1 & 1 & 0 & \cdots & 0 \\ -\Omega_2 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\Omega_{n-1} & 0 & 0 & \cdots & 1 \\ -\Omega_n & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$\mathcal{L}_{K} = \begin{pmatrix} -\Omega_{1} & 1 & 0 & \cdots & 0 \\ -\Omega_{2} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\Omega_{n-1} & 0 & 0 & \cdots & 1 \\ -\Omega_{n} & 0 & 0 & \cdots & 0 \end{pmatrix} \qquad \qquad \mathcal{K}_{n}(0) = \begin{pmatrix} K_{1}(0) \\ K_{2}(0) \\ \vdots \\ K_{n}(0) \\ K_{n+1}(0) \end{pmatrix} = \begin{pmatrix} \Omega_{2} - \Omega_{1}\Omega_{1} \\ \Omega_{3} - \Omega_{2}\Omega_{1} \\ \vdots \\ \Omega_{n+1} - \Omega_{n}\Omega_{1} \\ 0 \end{pmatrix}$$

$$K_n(t) = e^{\mathcal{L}_K t} K_n(0)$$

HEOM/DEOM vs MKCT

Nakajima-Zwanzig formalism

$$\dot{\rho}(t) = -\mathrm{i}[H_{\mathrm{S}}, \rho(t)] + \int_0^t d\tau \, \mathcal{K}(t-\tau) \rho(t)$$

System-bath seperation

HEOM/DEOM

Mori formalism

$$\dot{C}_{\mu\mu}(t) = \Omega_1 C_{\mu\mu}(t) + \int_0^t d\tau K_1(\tau) C_{\mu\mu}(t-\tau)$$

kernel is a number

Memory kernel coupling theory

Y Tanimura, JCP 153.2 (2020).

J Shao et al, Chemical Physics Letters 395, 216 (2004)

YJ Yan et al, Frontiers of Physics 11 (2016): 1-27.

MKCT: Spin-boson model

auxiliary kernels

$$\dot{K}_n(t) = K_{n+1}(t) - \Omega_n K_1(t)$$

$$K_n(t) \equiv ((i\mathcal{L})^n \hat{f}(t), \hat{\mu})/(\hat{\mu}, \hat{\mu})$$

Moments

$$\Omega_n \equiv ((i\mathcal{L})^n \hat{\mu}, \hat{\mu})/(\hat{\mu}, \hat{\mu})$$

MKCT: Anderson impurity model

$$\widehat{H} = \xi(\widehat{n}_{\uparrow} + \widehat{n}_{\downarrow}) + U\widehat{n}_{\uparrow}\widehat{n}_{\downarrow} + \sum_{s=\uparrow,\downarrow} \sum_{k} \epsilon_{ks} c_{ks}^{\dagger} \widehat{c}_{ks} + \sum_{s=\uparrow,\downarrow} \sum_{k} (t_{ks} \, \widehat{c}_{ks}^{\dagger} \widehat{d}_{s} + \text{h. c.})$$

$$A_{s}(t) = \langle \{\widehat{d}_{s}(t), \widehat{d}_{s}^{\dagger}(0)\} \rangle, \qquad A_{s}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dt \, e^{i\omega t} A_{s}(t)$$

Nonlinear couplings

(extended) Dissipaton Equations of Motion (DEOM)

Yan, Y. *Front. Phys.* **2016** 11 (4) Yan, Y. *JCP* **2018** 148 (11)

Memory Kernel Coupling Theorey (MKCT)

Spin-lattice relaxation results: linear contribution

Raw data: rate kernels v.s. rate constants

Rate constants from FGR

Rate kernels from DEOM

Rate constants are the Markovian approximation to rate kernels

$$\dot{m{p}}(t) = \int_0^t d au ilde{m{K}}(t- au;t) m{p}(au) \qquad \qquad \mathcal{K}(t) \; pprox \; k\delta(t) \ k = \int_0^\infty \mathrm{d}t \, \mathcal{K}(t)$$

Spin-lattice relaxation results: linear contribution

As expected, the golden rule works well for weak interactions;

However, underestimate the rates when: high temperature and strong coupling.

Spin-lattice relaxation results: linear contribution

Numerical simulation satisfies the detailed balance

The detailed balance: $k_{0\leftarrow 1} = \exp(-\beta \Delta) k_{1\leftarrow 0}$

Spin-lattice relaxation results: quadratic contribution

 $J(\omega) \uparrow$ faster damping

The source of rate kernel oscillation:

Despite FGR predict

$$k_{
m oscillatory} \propto \int_{-\infty}^{\infty} {
m d}t \exp\{{
m i} \Delta/\hbar t\}$$

Rate kernels calculated with DEOM always damps to 0 (at $t \to \infty$)

Spin-lattice relaxation results: quadratic contribution

T dependency:

- FGR overestimates the rates, different than linear.
- The deviation is more dramatic than linear.
- In strong coupling, T₁
 is less temperature
 dependent than FGR

Quick summary: spin-lattice relaxation

1. The transient behavior of the relaxation are quite different

Linear process: short memory

Quadratic process: very long memory, slow decaying

2. The FGR deviates from DEOM when interaction is strong

3. Detailed balance is conserved in both FGR & DEOM simulations.

$$k_{0\leftarrow 1} = \exp(-\beta \Delta) k_{1\leftarrow 0}$$

Outline

- Background
 - Molecular qubits
 - Phenomenological results and microscopic model
- Nonlinear couplings
 - Exact dynamics: memory kernel coupling theory
 - Linear and quadratic couplings
- Spin-polaron model
 - Experimental results for ZnHOTP
 - New mechanism for spin-lattice relaxation

Temperature insensitive T_1 in ZnHOTP

MOF qubit material ZnHOTP
 Stack up
 Solvent site
 O
 C
 H

Lei Sun @ Westlake

A. Zhou, R. Bi, ..., W. Dou*, L. Sun*, arXiv:2506.04885 (2025)

Chirality and the microscopical spin-polaron model

Chirality of ZnHOTP confirmed via XRD & second harmonic deneration (SHG)

XRD + SHG supports Space group P6₃ Chiral structure

$$\widehat{H} = \frac{1}{M} \widehat{A} \widehat{\sigma}_{S} + H_{C} + \widehat{\sigma}_{C} (\alpha_{B} \hat{x}_{B} + \alpha_{2} \hat{x}_{B}^{2}) + \widehat{\sigma}_{z} \hat{y}_{B}$$

 $\widehat{\chi}_B$ Collective lattice mode for relaxation

 \hat{y}_B Collective mode for spin-polaron (decoherence)

Hypothesis: the spin polaron relaxation mechanism

Thermally activated relaxation of spin polarons in ZnHOTP

- Spin and a phonon couple to form a spin polaron
- ZnHOTP powder at X band: activation energy Ea≈0, coincidence!
- Higher magnetic field breaks this coincidence.
- Pore filling with solvent may break or reinforce this coincidence

spin down spin up Ea ≈ 0 up-polaron distortion spin down down-polaron distortion

ZnHOTP lattice distortion

Insights from fitting the experimental data

$$k_{0\leftarrow 1}^{\text{quad}} = 2\sqrt{\frac{\pi}{A}} \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{J(\omega)}{1 - e^{\beta\omega}} \int_{-\infty}^{\infty} \frac{d\omega'}{\pi} \frac{J(\omega')}{e^{\beta\omega'} - 1} \exp\left[-\frac{(\Delta - \omega + \omega' - E_r)^2}{4A}\right] + \sqrt{\frac{\pi}{A}} \left[\int_{0}^{\infty} \frac{d\omega}{\pi} J(\omega) \coth\left(\frac{\beta\omega}{2}\right)\right]^2 \exp\left[-\frac{(\Delta - E_r)^2}{4A}\right]$$

$$J(\omega) = \frac{2\lambda \zeta \omega_B^2 \omega}{(\omega^2 - \omega_B^2)^2 + \zeta^2 \omega^2}$$

$\omega_{\rm B}~({\rm cm}^{-1})$	ζ (cm ⁻¹)	$\omega_{\rm max}~({\rm cm}^{-1})$	E_r (cm ⁻¹)
221.2	74.7	218.1	33.8

Quick summary: spin-polaron model

1. Spin relaxation rate ZnHOTP: No temperature dependence.

2. ZnHOTP is chiral, forming spin-polaron. With different magnetic field and solvent environment, such behaviors are gone

Dry powder at X band

Thank you!

Students:

Wei Liu (MKCT)

Ruihao Bi (spin-polaron)

Collaborators:

Lei Sun @ Westlake

Yao Wang @ USTC

Acknowledge:

