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Materials Challenges for QT 2.0
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Quantum bit (qubit), the fundamental unit of QT 2.0*

Hypothetically, any (quasi) two-level system can be a qubit. Why challenging?

* it is also possible, and practical, to use multi-state quantum bits, commonly known as qudits

Josephson junction e/n spin
Trapped ion

0

1

Classical bit Qubit



Electron spin qubits 
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• Defect spin qubit

• Molecular qubit

Advantages: room-temperature coherence                        Disadvantages: lack designability and tunability

Chem. Mater. 29, 1885-1897 (2017) J. Am. Chem. Soc. 144, 19008-19016 (2022)

Spin center : Metal ions

J. Am. Chem. Soc. 144, 19008-19016 (2022)

Spin center : organic radical

  

   

      

      

     

                  

                

     

  

   

     

      

     

      

Nature 455, 648–651 (2008) ACS Photonics 7, 2147–2152 (2020) Phys. Rev. B 95, 161201(2017)



Relaxation time 
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Spin–lattice relaxation time (T1)

Decoherence time (T2) 

Chem. Eur. J. 27, 9482-9494 (2021)
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Phonon modes

Spin relaxation mechanism

J. Magn. Reson. 139, 165–174 (1999)

Problems

• The applicable conditions of the formula

• Too many parameters cause overfitting

• Often it's simulation rather than fit

Simulation will fix some parameters but fit not

• Phonons include acoustic phonons and optical phonons

Chem. Sci. 13, 7034-7045 (2022)
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Nature 557, 691-695 (2018)

Spin-phonon relaxation



Spin-phonon relaxation

8

Activation energy

Spin relaxation mechanism

Anisotropy

Concentration

Electronic state

Field

Acoustic Optical 

Optical 

 

Table 1. The equation of typical spin relaxation mechanisms.53,120,121 

Mechanism Equation 

Direct 𝐴𝐷𝑖𝑟𝐵
4

𝑒ℏ𝜔 𝑘𝐵𝑇 

𝑒ℏ𝜔 𝑘𝐵𝑇 − 1
 

Raman 𝐴𝑅𝑎𝑚  
𝑇

𝛩𝐷
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 𝑥8 𝑒𝑥

 𝑒𝑥−1 2 ⅆ𝑥
𝛩𝐷
𝑇

0
 (sometimes 𝐴𝑅𝑎𝑚𝑇𝑚  with 𝑚 = 2 − 9) 

Orbach 𝐴𝑂𝑟𝑏

𝛥3

𝑒𝛥 𝑘𝐵𝑇 − 1
 

Local mode 𝐴𝑙𝑜𝑐

𝑒ℏ𝜔𝑝ℎ𝑜𝑛𝑜𝑛 𝑘𝐵𝑇 

 𝑒ℏ𝜔𝑝ℎ𝑜𝑛𝑜𝑛 𝑘𝐵𝑇 − 1 
2 

Thermally activated 𝐴𝑡ℎ𝑒𝑟𝑚

2𝜏𝑐
0𝑒𝐸𝑎 𝑘𝐵𝑇 

1 + 𝜔2𝜏𝑐
02

𝑒2𝐸𝑎 𝑘𝐵𝑇 
 

Tumbling-dependent 

   𝑔𝑖− 𝑔𝑒 
2

𝑖=𝑥 ,𝑦 ,𝑧

9𝜏𝑅
+

2
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𝜇𝐵  𝜔

𝑔 𝛽
 

2
 
 ∆𝑔 2

3
+  𝛿𝑔 2 𝐽 𝜔  

+
2

9
𝐼 𝐼 + 1   𝐴𝑖 − 𝑎𝑖𝑠𝑜  

2 𝐽 𝜔 𝑖 +𝐶𝑠𝑜𝑙𝑣𝑒𝑛𝑡
𝜏𝑠𝑜𝑙𝑣𝑒𝑛𝑡

1+(𝜔𝜏𝑠𝑜𝑙𝑣𝑒𝑛𝑡 )2
 

Cross relaxation constant (temperature-independent) 

𝑇: temperature; 𝐵: magnetic field strength; ω: Larmor frequency; 𝛩𝐷: Debye temperature;  𝛥: energy of low -lying excited state; 

𝜔𝑝ℎ𝑜𝑛𝑜𝑛 : energy of local phonon mode. 𝜏𝑐
0: pre-exponential factor; 𝐸𝑎 : activation energy; gi: principle g value along the i axis; ge: g 

value of free electron; τR: tumbling correlation time; μB: B h    g     ; ∆g = gzz – 0.5(gxx+gyy); δg = 0.5(gxx-gyy); 𝐽 𝜔 =
𝜏𝑅

1 +  𝜔𝜏𝑅 
2; I: 

nuclear spin; A i: principle component of the nuclear hyperfine constant along the i axis in angular frequency units; a iso: the isotropic 

nuclear hyperfine constant; 𝜏solvent: correlation time for motion of the solvent relative to the radical; C solvent: a function of the dipolar 

interaction with solvent nuclei. ADir, ARam, AOrb, Aloc, Atherm are pre-factors. 

The equation of typical spin relaxation mechanisms
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Hamiltonian for an unperturbed spin in magnetic field

Each ion 𝑗 has equilibrium 𝑟𝑗
 0 

and a small displacement 𝑄𝑗

Suppose collective vibration at each ionic site are 

9

The spin-lattice interaction: collective phonon

𝐵

Diagonal g-factor 𝑔𝑧𝑧



Collective phonon mode: the spectral density function
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The collective vibration is characterized by the spectral density

𝐵

Diagonal g-factor 𝑔𝑧𝑧The lattice phonons

𝑘-th mode’s weight

The spectral density

Data adapted from Prof. Lei Sun’s unpublished work
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Memory kernel coupling theory
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ሶ𝐶𝜇𝜇 𝑡 = Ω𝐶𝜇𝜇 𝑡 +  
0

𝑡
d𝜏𝐾 𝜏 𝐶𝜇𝜇 𝑡 − 𝜏 

C𝜇𝜇 𝑡 ≡ ො𝜇 𝑡 ො𝜇 0 = Tr[ ො𝜇 0 𝑒−𝑖ℒ𝑡 ො𝜇 0 𝜌eq ]

Definition of TCFs 

(moment)

(random force)

(memory kernel)

Ω = 𝑖ℒ ො𝜇 0 , ො𝜇 0 ො𝜇 0 , ො𝜇 0 −1

መ𝑓 𝑡 = 𝑒𝑖𝑡 1−𝒫 ℒ 1 − 𝒫 𝑖ℒ ො𝜇 0 

𝐾 𝑡 = ⟨𝑖ℒ መ𝑓 𝑡 , ො𝜇 0 ⟩ ො𝜇 0 , ො𝜇 0 −1

Define: 𝒫 ෠𝑂 𝑡 =
෠𝑂 𝑡 ,ෝ𝜇 0

ෝ𝜇 0 ,ෝ𝜇 0
ො𝜇 0 ; 𝒬 = 𝐼 − 𝒫

Open quantum systems

Mori projection
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ሶ𝐶𝜇𝜇 𝑡 = Ω𝐶𝜇𝜇 𝑡 +  
0

𝑡
d𝜏𝐾 𝜏 𝐶𝜇𝜇 𝑡 − 𝜏 Define: Ω𝑛 = ⟨ 𝑖ℒ 𝑛 ො𝜇, ො𝜇⟩⟨ ො𝜇, ො𝜇⟩−1

𝐾𝑛 𝑡 = 𝑖ℒ 𝑛 ො𝜇 መ𝑓 𝑡 , ො𝜇 ො𝜇, ො𝜇 −1

𝐾𝑛 0 = Ω𝑛+1 − Ω𝑛 Ω1 ሶ𝐾𝑛 𝑡 = 𝐾𝑛+1 𝑡 − Ω𝑛𝐾1 𝑡 

ℒ𝐾 =

−Ω1

−Ω2

1
0

0
1

⋯
⋯

0
0

⋮
−Ω𝑛−1

−Ω𝑛

⋮
0
0

⋮
0
0

⋱
⋯
⋯

⋮
1
0

𝐾𝑛 𝑡 = 𝑒ℒ𝐾𝑡𝐾𝑛 0 

𝐾𝑛 0 =

𝐾1 0 

𝐾2 0 
⋮

𝐾𝑛 0 

𝐾𝑛+1 0 

=

Ω2 − Ω1Ω1

Ω3 − Ω2Ω1

⋮
Ω𝑛+1 − Ω𝑛Ω1

0

&

&

Memory kernel coupling theory

W. Liu, Y. Su, Y. Wang, W. Dou, Phys. Rev. Lett. (accepted) arXiv:2407.01923



HEOM/DEOM vs MKCT

14

Nakajima-Zwanzig formalism 

System

System-bath 

couplings

HEOM/DEOM Memory kernel coupling theory

System-bath seperation
kernel is a number

Mori formalism 

Y Tanimura, JCP 153.2 (2020).

J Shao et al, Chemical Physics Letters 395, 216 (2004)
YJ Yan et al, Frontiers of Physics 11 (2016): 1-27.



MKCT: Spin-boson model
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W. Liu, Y. Su, Y. Wang, W. Dou, Phys. Rev. Lett. (accepted) arXiv:2407.01923

auxiliary kernels 

Moments 



MKCT: Anderson impurity model
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෡𝐻 = 𝜉 ො𝑛↑ + ො𝑛↓ + 𝑈ො𝑛↑ ො𝑛↓ + ෍

𝑠=↑,↓

෍

𝑘

𝜖𝑘𝑠 𝑐𝑘𝑠
† Ƹ𝑐𝑘𝑠 + ෍

𝑠=↑,↓

෍

𝑘

 𝑡𝑘𝑠 Ƹ𝑐𝑘𝑠
† መ𝑑𝑠 + h. c. 

𝐴𝑠 𝑡 = መ𝑑𝑠 𝑡 , መ𝑑𝑠
† 0 , 𝐴𝑠 𝜔 =

1

2𝜋
න
−∞

∞

d𝑡 𝑒i𝜔𝑡𝐴𝑠 𝑡 

𝐽 𝜔 =
Δ𝑊2

𝑊2 + 𝜔2

𝜉 = −𝑈/2, 𝑈 = 8Δ, 𝑘B𝑇 = 0.01Δ, 𝑊 = 10Δ

W. Liu, Y. Su, Y. Wang, W. Dou, Phys. Rev. Lett. (accepted) arXiv:2407.01923



Nonlinear couplings
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(extended) Dissipaton 

Equations of Motion (DEOM)
Memory Kernel Coupling 

Theorey (MKCT)

Yan, Y. Front. Phys. 2016 11 (4)

Yan, Y. JCP 2018 148 (11) 

R. Bi, W. Liu, W. Dou, J. Chem. Phys. 162, 224106 (2025)



Spin-lattice relaxation results: linear contribution
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Raw data: rate kernels v.s. rate constants

Rate constants are the Markovian approximation to rate kernels 

Rate constants from FGR

≈

Rate kernels from DEOM

R. Bi, Y. Su, Y. Wang, L. Sun, W. Dou, J. Chem. Phys. 161, 024105 (2024)



Spin-lattice relaxation results: linear contribution

19

Temperature dependency of 𝑇1

As expected, the golden rule works well for weak interactions; 

However, underestimate the rates when: high temperature and strong coupling.



Spin-lattice relaxation results: linear contribution
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Numerical simulation satisfies the detailed balance

The detailed balance: 

R. Bi, Y. Su, Y. Wang, L. Sun, W. Dou, J. Chem. Phys. 161, 024105 (2024)



Spin-lattice relaxation results: quadratic contribution
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Stationary rate and oscillating rate

The source of rate kernel oscillation:

Short memory Long memoryDamping

𝐽 𝜔 ↑, faster damping

𝛿𝑗𝑘 𝛿𝑗′𝑘′

𝜔𝑗

𝜔𝑗′

Despite FGR predict 

Rate kernels calculated with DEOM 

always damps to 0 ( at 𝑡 → ∞)



Spin-lattice relaxation results: quadratic contribution
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𝑇 dependency:

• FGR overestimates 
the rates, different 
than linear.

• The deviation is more 
dramatic than linear.

• In strong coupling, 𝑇1
is less temperature 
dependent than FGR



Quick summary: spin-lattice relaxation
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1. The transient behavior of the relaxation are quite different

2. The FGR deviates from DEOM when interaction is strong

3. Detailed balance is conserved in both FGR & DEOM 
simulations.

Linear process:

 short memory

Quadratic process:

very long memory, slow decaying

R. Bi, Y. Su, Y. Wang, L. Sun, W. Dou, J. Chem. Phys. 161, 024105 (2024)
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Temperature insensitive 𝑇_1 in ZnHOTP

● MOF qubit material ZnHOTP

● Anomalous temperature-insensitive 𝑇1 and its modulation

25

Lei Sun @ Westlake

Stack up Solvent site Zn

O

C

H

Magnetic field modulation

𝐸𝑧𝑒𝑒𝑚𝑎𝑛

X

Q

W

1/3 𝑐𝑚−1

1 𝑐𝑚−1

10/3 𝑐𝑚−1

Solvent modulation

X-band

A. Zhou, R. Bi, …, W. Dou*, L. Sun*, arXiv:2506.04885 (2025)



Chirality and the microscopical spin-polaron model 

● Chirality of ZnHOTP confirmed via XRD & second harmonic generation (SHG)

● Microscopic Model
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෡𝐻 =
1

2
Δො𝜎𝑧 + 𝐻𝐵 + ො𝜎𝑥 𝛼1 ො𝑥𝐵 + 𝛼2 ො𝑥𝐵

2 + ො𝜎𝑧 ො𝑦𝐵

Collective lattice 

mode for relaxation

ො𝑥𝐵 ො𝑦𝐵

Collective mode 

for spin-polaron 

(decoherence)

ො𝑦𝐵

Different 

coupling for |0⟩
and |1⟩

Chirality
Spin-Polaron

XRD + SHG supports

Space group P63

Chiral structure
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Thermally activated relaxation of spin polarons in ZnHOTP

• Spin and a phonon couple to form a spin polaron

• ZnHOTP powder at X band: activation energy Ea≈0, coincidence!

• Higher magnetic field breaks this coincidence.

• Pore filling with solvent may break or reinforce this coincidence

Dry powder at X band Dry powder at W band Powder soaked in THF Powder soaked in DMF

Hypothesis: the spin polaron relaxation mechanism 



Insights from fitting the experimental data 
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𝜔B  cm−1 𝜁  cm−1 𝜔max  cm−1 𝐸𝑟  cm−1 

221.2 74.7 218.1 33.8

A. Zhou, R. Bi, …, W. Dou*, L. Sun*, arXiv:2506.04885 (2025)

𝐽 𝜔 =
2𝜆𝜁𝜔𝐵

2𝜔

𝜔2 − 𝜔𝐵
2 2 + 𝜁2𝜔2

𝑘0←1
quad

= 2
𝜋

𝐴
න
−∞

∞ d𝜔

𝜋

𝐽 𝜔 

1 − 𝑒𝛽𝜔
න
−∞

∞ d𝜔′

𝜋

𝐽 𝜔′ 

𝑒𝛽𝜔′ − 1
exp −

Δ − 𝜔 + 𝜔′ − 𝐸𝑟
2

4𝐴
+

𝜋

𝐴
න
0

∞d𝜔

𝜋
𝐽 𝜔 coth

𝛽𝜔

2

2

exp −
Δ − 𝐸𝑟

2

4𝐴



Quick summary: spin-polaron model
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1. Spin relaxation rate ZnHOTP: No temperature dependence.

2. ZnHOTP is chiral, forming spin-polaron. With different magnetic field and

solvent environment, such behaviors are gone
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