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Hermitian quantum mechanics
● Closed system
● Real Hamiltonian and energies
● Usual quantum chemistry methods

Non-hermitian quantum mechanics
● Open system: discrete (localized) states of the system are 

coupled to a continuum (delocalized) of scattering states
● Complex Hamiltonian and energies
● Requires scattering or adapted quantum chemistry methods



  

Metastable electronic states (resonances)

● Super-excited states
● Core-excited and core-ionized states 
● Transient states formed in bimolecular collisions
● Transient anions

These resonances may decay by electron autodetachment, and 
thus have a complex-valued energy

ε = E – i Γ/2

E is the resonance energy

Γ is the resonance width (detachment rate)



  

Methods for dynamics of resonances

Current approaches
● Quantum propagation of nuclear wavepacket
● PES: precomputed with (expensive) scattering methods
● Accurate, costly, few degrees of freedom



  



  

Methods for dynamics of resonanes

Current approaches
● Quantum propagation of nuclear wavepacket
● PES: precomputed with expensive scattering methods
● Accurate, costly, few degrees of freedom

Our novel approach
● Classical propagation of nuclei
● PES: obtained on-the-fly, with hopefully cheap bound state and/or 

scattering methods
● More approximate, affordable, all degrees of freedom



  

i ℏ ∂
∂ t

Φ(r ,R , t)=H (r ,R , t)Φ(r ,R , t)

Time dependent Schrödinger equation:

Expanding in a set of orthornormal basis functions {ψj}:

Φ(r ,R , t)=∑
j

c j (t) ψ j(r ;R(t))

Complex surface fewest switches surface 
hopping (CS-FSSH)
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EOM for the expansion coefficients:

The propagation of each state j involves 3 terms:
● Phase term: real energy Ej

● Decay term: width Γj

● Coupling term: involving diabatic couplings HR
jk, continuum-

mediated couplings Γjk, and non-adiabatic couplings Fjk
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For the nuclei:

Coupling between electrons and nuclei with the FSSH formula:

P j→ k=max [−
2Δ t
ρ jj

ℜ(ρ jk )(Fkj⋅v−
Γ jk

2ℏ
),0 ]



  

Benchmark CS-FSSH against quantum dynamics (QD)



  

Low energy electron (<10 eV) encounters a molecule

At particular electron impact energies, a transient anion state AB-  is 
formed, which decay by one of the following:

e- + AB→ AB-→ e- + AB   autodetachment

e- + AB→ AB-→A + B-     dissociative electron attachment (DEA)



  

Low-energy electron induced chemistry



  

Low-energy electron induced chemistry



  

Iodoethene

● Rather small, fast 
calculations

● Prototypical DEA 
mechanisms, model for larger 
halogenated molecules



  

Iodoethene

σ* resonance at 0.5 eV
π* resonance at 1.05 eV

Both resonances promote 
dissociation of the I- ion

Olthoff et al. J. Chem. Phys. 83, 5627 (1985)



  

Computational details

● Dynamics with MRCIS (800 trajectories for each precursor anion)
● Orbitals from a SA(3)-CASSCF(8,6) calculation for the neutral
● cc-pVDZ basis set for C and H, ADZP basis set for I

● Systematic shift to match the equilibrium geometry scattering results

● Initial conditions sampled from the Wigner distribution for 333 K
● 0.25 fs time step for the classical integration, until ~25 fs
● At each time step, one extra energy calculation for the neutral
● 0.002 fs time step for the quantum propagation
● Decoherence correction for the standard α = 0.1 Hartree



  

● Elastic scattering calculations 

● σ* at 0.58 eV (exp. 0.5 eV)
π* at 1.11 eV (exp. 1.05 eV)

● Vertical detachment lifetimes: 
4.2 fs σ*, 2.5 fs π*



  

Autodetachment model 
employed in the dynamics: 
combination of quantum 
chemistry and few scattering 
calculations

Γ
1 
: width of the lower state

Γ
2 
: width of the upper state



  

● Population decay is extremely fast, and converges to 0.2

● Anion remains in the lower PES

● C-I cleavage and elimination of the I- ion



  

● Fast decay before 5 fs, slower decay later, converging to 0.17

● Between 5 and 15 fs, π* couples to σ* by C=C stretching and out-of-plane 
vibrations, followed by C-I bond breaking

● Potential barrier could hinder the DEA reaction, but not in the present case



  

● Experimental data (dots) is 
normalized to the first peak

● Profile of the DEA cross 
section is quite similar

σk (E)= π
E

1
N t

∑
i=1

N t γ(E)Γi
0
(E)

γ(Ei
0
)

gi(E)pi (t→∞)



  



  

Other potential applications

● Autoionizing states: transient anions, superexcited, core-
excited and core-ionized states, transient complexes in 
bimolecular collisions

● Radiative decay: fluorescence and phosphorescence decay 
described with an imaginary potential

● Molecules on surfaces: discrete states of adsorbed 
molecule coupled to the continuum of bulk states



  

Conclusions

● CS-FSSH, a novel methodology for nonadiabatic dynamics of 
resonances, implemented into Newton-X

● Any type of continuum, autoionizing states, radiative decay, 
surfaces, cavities

● DEA to iodoethene, detailed picture of the underlying 
dynamics
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