Towards efficient modeling of positronium in heterogeneous environments

Márcio T. do N. Varella

Institute of Physics University of São Paulo

Molecular Physics

electrons positrons photons

http://fig.if.usp.br/~mvarella/

Phys. Rev. Lett. 107, 103201 (2011)

J. Chem. Phys. 141, 114103 (2014)

Chem. Sci. 11, 44 (2020)

Prof. Andres Reyes UNAL, Colombia

Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems

PCCP **17**, 17527 (2015)

Cancer diagnosis:
Physics Communications 3 173 (2020)
Sci. Rep. 13 7648 (2023)

Improving PET with Ps imaging:
Reviews of Modern Physics 95 021002 (2023)
Science Advances 10 eadp2840 (2024)

Cancer treatment:Sci. Rep. **11**, 2474 (2021)

Quantum Mechanics/Molecular Mechanics (QM/MM)

Martin Karplus

© Nobel Media AB. Photo Mahmoud Michael Levitt

© Nobel Media AB, Photo: A. Mahmoud Arieh Warshel

Nobel Prize in Chemistry 2013

Sequential QM/MM:

- 1) Structure from MM
- 2) Properties from QM/MM

Quantum Mechanics/Molecular Mechanics (QM/MM)

S-QM/MM: Solvated Electron [Phys. Rev. B 210110 (2004)]

[Adv. Quantum Chem. 28 89 (1997)]

JCIM 60 3472 (2020)

MM Step:

- Monte Carlo simulation
- Coulomb (point-charges) + Lennard-Jones FF

APMO [Int. J. Quantum Chem. 119 e25705 (2019)]

Ps-water QM/MM Model

Multicomponent Quantum Mechanics/Molecular Mechanics Study of Hydrated Positronium

		KT
e ⁻ VDE	(eV)	4.53 ± 0.04
e ⁺ VDE	(eV)	5.21 ± 0.04
$ au_{ m Ps}$	(ns)	6.7 ± 0.1
$ au_{ m po}$	(ns)	7.3 ± 0.1
$ au_{ m co}$	(ns)	58.0 ± 0.6

$$\lambda = \pi r_0^2 c \Biggl(S_N + \sum_{i=1}^{N_{\alpha}} S_i^{\alpha} + \sum_{j=1}^{N_{\beta}} S_j^{\beta} \Biggr).$$

 $\tau = \lambda^{-1}$

Annihilation Enhancement Factor

Hydrated Ps (no optimization): $\tau_{\rm po}^0 = (7.3 \pm 0.1) \, {\rm ns} \quad \stackrel{\gamma_{nl}}{\longrightarrow} \quad \tau_{\rm po} = (2.27 \pm 0.03) \, {\rm ns}$ Experiment*: $\tau_{\rm po} = 1.85 \, {\rm ns} \, (18\%)$

*Chuev et al., Int. J. Quant. Chem. 88, 634 (2002)

Electron in Methanol

Model: TDDFT/6-31G++(d,p)/6QM+200MM

Experiment: Jou & Freeman, J. Phys. Chem. 81, 909 (1977)

Electron in Methanol

Model: DFT/M06-2X/6-31G++(d,p)/14QM+200MM

MetOH: Jorgensen, JCP **90** 1276 (1986) NPT (1 atm, 298 K)

Vertical Binding Energy (VBE)

 $VBE = (3.36 \pm 0.03) \text{ eV} \quad (\sigma = 4.2 \text{ Å})$ "small cavity"

VBE =
$$(3.15 \pm 0.04) \,\text{eV}$$
 ($\sigma = 4.5 \,\text{\AA}$)

"large cavity"

Experiment : $3.1 \,\mathrm{eV}^a$ or $3.4 \,\mathrm{eV}^b$

^aChem. Lett. **39** 668 (2010) ^bSience Adv. **5** 6896 (2019)

Ps in Methanol

Large Cavity Model

Experiment*: $\tau_{po} = 3.58 \text{ ns} (24\% \text{ to } 27\%)$

Small Cavity Model

N _{QM}	$\tau^0_{\rm po}(\rm ns)$	$ au_{ m po}(m ns)$
10	(19.8 ± 0.97)	(4.32 ± 0.31)
16	(16.4 ± 0.93)	(3.60 ± 0.12)

Experiment*: $\tau_{po} = 3.58 \text{ ns} (1\% \text{ to } 17\%)$

*Experiment: Mogensen & Jacobsen, Chem. Phys. 73, 223 (1982)

APMO/HF/aug-cc-pVTZ/6-31++G**

Ps in Ethanol

cavity	$\tau^0_{\rm po}(\rm ns)$	$ au_{ m po}(m ns)$
small	(16.1 ± 0.57)	(3.59 ± 0.13)
large	(21.6 ± 0.93)	(4.81 ± 0.22)

^aExperiment: τ_{po} = 3.50 ns (2% to 27%) ^bExperiment: τ_{po} = 3.58 ns (0.3% to 25%)

Model: HF/aug-cc-pVTZ/6-31++G** 10QM+200MM

e⁻

^aExperiment: Mogensen & Jacobsen, Chem. Phys. **73**, 223 (1982) ^bExperiment: Castellaz et al., J. Nuc. Rad. Sci. **3**, R1 (2002)

Ps in Acetonitrile

Jorgensen, JCP **63** 547 (1988) NPT (1 atm, 298 K)

Model: HF/aug-cc-pVTZ/6-31++G** 12QM+200MM $\tau^0_{po}(ns)$ $\tau_{po}(ns)$ (13.9 ± 0.57)(3.19 ± 0.09)

^aExperiment:
$$\tau_{po} = 3.30 \text{ ns} (3\%)$$

Conclusions & Outlook

- S-QM/MM approach to solvated Ps is promising
- Reoptimize Ps Lennard-Jones parameters (H, C, N, O)
- Universal parametrization? Chemical groups?
- Reoptimize enhancement factors
- Molecular dynamics with Ps
- Fully classical (?)

Support

<u>Students</u> Dr. Mateus Bergami Leonardo B. Martins (PhD)

<u>Collaborators</u> Prof Kaline Coutinho (USP/Brazil) Prof. Andres Reyes (UNAL/Colombia) Dr. Jorge Charry (Uni.Lu/Luxembourg)

