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Transport in Multilayered Materials

Experiment vs Numerical simulations of
exciton-polariton
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• Experiments predominantly filled the entire optical 

cavity

• Theories mostly use a single layer to model the 

material inside a cavity

SRK, et al. arXiv:2502.12933 (2025).
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ExperimentalistsComputationalists

With phonon

• Vibronic bands formation in the presence of 

exciton-phonon coupling

With phonon



Main Results

SRK, et al. arXiv:2502.12933 (2025).
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1. We developed a mixed quantum classical method 

that allow us to propagate ~ 1,000,000 quantum 

states (Hilbert space size).

2. We developed a microscopic theory to describe the 

vibronic bands

3. We show that exciton-polariton dynamics is more 

coherent in multilayered materials.
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Model and Theory
Results 1: Vibronic 

Bands

Results 1: Transport in 
Multilayered Materials
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Model and Theory

Holstein-Tavis-Cummings Light-Matter (LM) Hamiltonian for an exciton-polariton 
system beyond the long-wavelength approximation 

1. Exciton coupled to a single frequency phonon ensemble (same oscillation 
frequency)

2. There is no inter-layer hopping (for multilayered materials)
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• Contains bare exciton, bare photon, and exciton-

photon interaction terms (photon in 𝒌-space)

• Contains cavity photon loss and exciton-phonon 

interaction terms (photon in 𝒌-space)



Model and Theory

We perform time evolution using mixed-quantum-classical mean field Ehrenfest 
(MFE) method. 

1. Phonons are considered quasi-classically (𝑅𝑛(𝑡) and 𝑃𝑛(𝑡))

2. Exciton and photon evolve quantum mechanically
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Mixed Quantum Classical Dynamics



Model and Theory

The exciton-photon state evolves using 

Fourier transform 

of exciton states

Mapping to 

dark-bright layer
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Light-matter system Bright layer Dark layers

𝑥

y

in 𝑘-space
SRK, et al. arXiv:2502.12933 (2025).
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Vibronic Bands in Dispersion

L. Blackham. arXiv:2501.16622 (2025).
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Our theory

Quantum 

Dynamics 

Simulation

No Phonon

angle-resolved optical spectra

By treating phonon as Harmonic oscillators:

Floquet Model

With Phonons

෠𝑋𝑛
†
෠𝑃(𝑡)

Exciton-Polariton is interacting with a 

time-dependent phonon field
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Exciton group velocity

𝛾 = 𝛾0

𝛾 = 2𝛾0

𝛾 = 3𝛾0

𝛾:      Exciton-phonon coupling constant
𝑣𝑔:    Group velocity
𝐸0:    Initial State energy
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SRK, et al. arXiv:2502.12933 (2025).
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𝛾 = 𝛾0

𝛾 = 2𝛾0

𝛾 = 3𝛾0
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Exciton population transport over time

𝛾:      Exciton-phonon coupling constant
𝑣𝑔:    Group velocity
𝐸0:    Initial State energy

SRK, et al. arXiv:2502.12933 (2025).
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Exciton population transport over time

Single layer without 

phonon (𝛾 = 0)
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Multilayered with phonon 

(𝛾 = 2𝛾0)

1 layer

Incoherent dynamics in the single layer material turns to 
ballistic coherent dynamics in multilayered materials 
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SRK, et al. arXiv:2502.12933 (2025).



Origin of enhanced transport

Phonon fluctuation synchronization in the Bright Layer
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Conclusion

1. We developed a method enabling us to simulate exciton-polariton for an 

order of 107 Hilbert space size.

2. Multilayered materials can be significantly different from single layer 
material, we studied the enhanced transport.

3. Multilayer materials show enhancement transport is even in the presence 
of cavity photon loss.

4. The enhancement of transport is multilayered material is due to a 
synchronization of phonon fluctuations

5. The effective temperature in multilayer materials is lower than single layer 
materials. There is possibly a phase transition happening when we 
increase the number of layers.

Arkajit Mandal, PI

Arshath Manjalingal, 
Graduate student

Logan Blackham, 
Graduate student
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Main Results

SRK, et al. arXiv:2502.12933 (2025).

1

1. We developed a mixed quantum classical method 

that allow us to propagate ~ 1,000,000 quantum 

states (Hilbert space size).

2. We developed a microscopic theory to describe the 

vibronic bands

3. We show that exciton-polariton dynamics is more 

coherent in multilayered materials.
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Model and Theory

Holstein-TavisCummings Hamiltonian for an exciton-polariton system beyond the 
long-wavelength approximation coupled to a classical phonon ensemble

• Contains bare exciton, bare photon, and exciton-

photon interaction terms (photon in 𝒌-space)

• It is block diagonal if exciton in 𝒌-space

• Contains cavity photon loss and exciton-phonon 

interaction terms (photon in 𝒌-space)

• It is diagonal if exciton in real space



Results

Generating initial state
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Saeed R. K., et al. arXiv:2502.12933 (2025).
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Model and Theory

The exciton-photon state evolves using 

Saeed R. K., et al. arXiv:2502.12933 (2025).
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Results

we model the materials part using a system based on a multilayered perovskite material [2] and weak Huang–Rhys 
factor [3] in an optical cavity

Refractive Index meV

1. Saeed R. K., et al. arXiv:2502.12933 (2025).

2. Janke, Svenja M., et al. The Journal of Chemical Physics 152.14 (2020).

3. Whalley, Lucy D., et al. Journal of the American Chemical Society 143.24 (2021): 9123-

9128.
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Exciton population transport over time
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Incoherent dynamics in the single layer material turns to 
ballistic coherent dynamics in multilayered materials 
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Results

Exciton group velocity
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𝛾:      Exciton-phonon coupling constant
𝑣𝑔:    Group velocity
𝜔−:   Lower polariton energy dispersion
𝐸0:    Initial State energy



Purity

We measure coherence using purity

• Purity of 1 means pure state
• Purity less than 1 means mixed state
• The larger purity, the more coherent
• decoherence means lower purity

Multi-layered materials extends coherence 
time by 10x time! 
(via the phonon fluctuation Synchronization 
effects! )

time (ps)
Saeed R. K., et al. arXiv:2502.12933 (2025).
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