

Modification of Exciton-Polariton Transport Coupled to Phononic Bath

Saeed Rahmanian Koshkaki

References:

WISTA

- 1. SRK, A. Manjalingal, L. Blackham, and A. Mandal. arXiv:2502.12933 (2025).
- 2. L. Blackham, A. Manjalingal, SRK, and A. Mandal. arXiv:2501.16622 (2025).

April 2025

Transport in Multilayered Materials

Experiment vs Numerical simulations of exciton-polariton

- Experiments predominantly filled the entire optical cavity
- Theories mostly use a single layer to model the material inside a cavity
- Vibronic bands formation in the presence of exciton-phonon coupling

Main Results

- 1. <u>We developed a mixed quantum classical method</u> that allow us to propagate ~ 1,000,000 quantum states (Hilbert space size).
- 2. We developed <u>a microscopic theory</u> to describe the vibronic bands
- 3. We show that exciton-polariton dynamics is more <u>coherent in multilayered materials</u>.

ĀM

TEXAS A&M

Holstein-Tavis-Cummings Light-Matter (LM) Hamiltonian for an exciton-polariton system beyond the long-wavelength approximation

- 1. Exciton coupled to a single frequency phonon ensemble (same oscillation frequency)
- 2. There is no inter-layer hopping (for multilayered materials)

$$\hat{H}_{\rm LM} = \hat{H}_{\rm EP} + \hat{H}_{\rm env}$$

• Contains bare exciton, bare photon, and excitonphoton interaction terms (photon in *k*-space) • Contains cavity photon loss and exciton-phonon interaction terms (photon in *k*-space)

We perform time evolution using mixed-quantum-classical mean field Ehrenfest (MFE) method.

- 1. Phonons are considered quasi-classically $(R_n(t) \text{ and } P_n(t))$
- 2. Exciton and photon evolve quantum mechanically

The exciton-photon state evolves using $\hat{H}_{\rm LM} = \hat{H}_{\rm EP} + \hat{H}_{\rm env}$ $|\Psi(t+\delta t)\rangle = e^{-i\hat{H}_{\rm LM}\delta t} |\Psi(t)\rangle \approx e^{-i\hat{H}_{\rm env}\delta t/2} e^{-i\hat{H}_{\rm EP}\delta t} e^{-i\hat{H}_{\rm env}\delta t/2} |\Psi(t)\rangle$ $\approx e^{-i\hat{H}_{\rm env}\delta t/2}\hat{U}_{\rm ft}\hat{U}_{\rm B}\cdot e^{-i(\hat{U}_{\rm B}^{\dagger}\hat{U}_{\rm ft}^{\dagger}\hat{H}_{\rm EP}}\hat{U}_{\rm ft}\hat{U}_{\rm B})\delta t}\hat{U}_{\rm P}^{\dagger}\hat{U}_{\rm ft}^{\dagger}e^{-i\hat{H}_{\rm env}\delta t/2}\left|\Psi(t)\right\rangle$ Mapping to Fourier transform dark-bright layer of exciton states $\hat{U}_{\rm ft}\hat{U}_{\rm B}$

Vibronic Bands in Dispersion

By treating phonon as Harmonic oscillators:

$$\begin{aligned} R_n(t) \approx R_n(0) \cos \omega t + \frac{1}{\omega} P_n(0) \sin \omega t \\ \downarrow \\ Floquet Model \\ \hat{H}_{LM} \rightarrow \hat{H}_{LM}(t) = \hat{H}_{EP} + \hat{P} e^{i\omega t} + \hat{P}^{\dagger} e^{-i\omega t} \end{aligned}$$

angle-resolved optical spectra

L. Blackham. arXiv:2501.16622 (2025).

Exciton-Polariton is interacting *with a* time-dependent **phonon field**

Exciton group velocity

- γ : Exciton-phonon coupling constant
- v_g : Group velocity
- E_0 : Initial State energy

Exciton population transport over time

- γ : Exciton-phonon coupling constant
- v_g : Group velocity
- E_0 : Initial State energy

Exciton population transport over time

Incoherent dynamics in the single layer material turns to ballistic coherent dynamics in multilayered materials

Origin of enhanced transport

Phonon fluctuation synchronization in the Bright Layer

Conclusion

- We developed a method enabling us to simulate exciton-polariton for an order of 10⁷ Hilbert space size.
- 2. Multilayered materials can be significantly different from single layer material, we studied the enhanced transport.
- 3. Multilayer materials show enhancement transport is even in the presence of cavity photon loss.
- 4. The enhancement of transport is multilayered material is due to a synchronization of phonon fluctuations
- 5. The effective temperature in multilayer materials is lower than single layer materials. There is possibly a phase transition happening when we increase the number of layers.

Arkajit Mandal, PI

Arshath Manjalingal, Graduate student

Logan Blackham, Graduate student

Thank you!

Supporting Slides

Main Results

- 1. <u>We developed a mixed quantum classical method</u> that allow us to propagate ~ 1,000,000 quantum states (Hilbert space size).
- 2. We developed <u>a microscopic theory</u> to describe the vibronic bands
- 3. We show that exciton-polariton dynamics is more <u>coherent in multilayered materials</u>.

ĀM

TEXAS A&M

Holstein-TavisCummings Hamiltonian for an exciton-polariton system beyond the long-wavelength approximation coupled to a classical phonon ensemble

$$\hat{H}_{\rm LM} = \hat{H}_{\rm EP} + \hat{H}_{\rm env}$$

- Contains bare exciton, bare photon, and excitonphoton interaction terms (photon in *k*-space)
- It is block diagonal if exciton in *k*-space

- Contains cavity photon loss and exciton-phonon interaction terms (photon in *k*-space)
- It is diagonal if exciton in **real space**

Results

Generating initial state

Saeed R. K., et al. arXiv:2502.12933 (2025).

The exciton-photon state evolves using

$$\begin{aligned} \hat{H}_{\mathrm{LM}} &= \hat{H}_{\mathrm{EP}} + \hat{H}_{\mathrm{env}} \\ |\Psi(t+\delta t)\rangle &= e^{-i\hat{H}_{\mathrm{LM}}\delta t} |\Psi(t)\rangle \approx e^{-i\hat{H}_{\mathrm{env}}\delta t/2} e^{-i\hat{H}_{\mathrm{EP}}\delta t} e^{-i\hat{H}_{\mathrm{env}}\delta t/2} |\Psi(t)\rangle \\ &\approx e^{-i\hat{H}_{\mathrm{env}}\delta t/2} \hat{U}_{\mathrm{ft}} \hat{U}_{\mathrm{B}} \cdot e^{-i\left(\hat{U}_{\mathrm{B}}^{\dagger}\hat{U}_{\mathrm{ft}}^{\dagger}\hat{H}_{\mathrm{EP}}\hat{U}_{\mathrm{ft}}\hat{U}_{\mathrm{B}}\right)} \delta t \hat{U}_{\mathrm{B}}^{\dagger}\hat{U}_{\mathrm{ft}}^{\dagger} e^{-i\hat{H}_{\mathrm{env}}\delta t/2} |\Psi(t)\rangle \\ &\sum_{k} \left[\epsilon_{k} \hat{X}_{k,b}^{\dagger} \hat{X}_{k,b} + \sqrt{S}\Omega_{k} \left(\hat{X}_{k,b}^{\dagger}\hat{a}_{k} + h.c. \right) + \omega_{k} \hat{a}_{k}^{\dagger}\hat{a}_{k} \right] + \sum_{k,d} \epsilon_{k} \hat{X}_{k,d}^{\dagger} \hat{X}_{k,d} \end{aligned}$$

Saeed R. K., et al. arXiv:2502.12933 (2025).

Results

we model the materials part using a system based on a multilayered perovskite material [2] and weak Huang-Rhys factor [3] in an optical cavity

Refractive index	$\eta = 2.4$
Exciton hopping integral	$\tau = 400 \text{ cm}^{-1}$
Exciton on-site energy	$\epsilon_0 = 3.2 \text{ eV}$
Lattice spacing	a = 1.2 nm
Number of sites per layer	N = 40001
Nuclear time step	$dtN \approx 00.48 \text{ fs}$
Exciton time steps	dtE pprox 0.012 fs
Phonon mode frequency	$\omega = 1440~\mathrm{cm}^{-1}$
Exciton-phonon coupling constant	$\gamma_0 = 1.1 \sqrt{\omega^3} = 5.8 \times 10^{-4}$ a.u.
Exciton-photon coupling	$\Omega_0 = 480 \text{ meV}$
Distance between two reflective mirrors of cavity	$L = 100 \ nm$
Interlayer spacing of multilayered material	$a_u = 4 \text{ nm}$
Rabi splitting	pprox 874 meV

- 1. Saeed R. K., et al. arXiv:2502.12933 (2025).
- 2. Janke, Svenja M., et al. *The Journal of Chemical Physics* 152.14 (2020).
- 3. Whalley, Lucy D., et al. Journal of the American Chemical Society 143.24 (2021): 9123-

Exciton population transport over time

Incoherent dynamics in the single layer material turns to ballistic coherent dynamics in multilayered materials

Saeed R. K., et al. arXiv:2502.12933 (2025).

Results

Exciton group velocity

Group velocity v_q : Lower polariton energy dispersion ω_{-} : *E*₀: Initial State energy 1.6 $v_g(M \text{ layers})/v_g(1 \text{ layer})$ $E_0 = 2.78 \text{ eV}$ $E_0 = 2.64 \text{ eV}$ $\gamma = 2\gamma_0$ $E_0 = 2.54 \text{ eV}$ 1.0 25 10 15 20 5 number of layers (M)

 γ :

Exciton-phonon coupling constant

Purity

We measure coherence using purity

- <u>Purity of 1</u> means pure state
- <u>Purity less than 1 means mixed state</u>
- The larger purity, the more coherent
- decoherence means lower purity

Multi-layered materials extends coherence time by 10x time! (via the phonon fluctuation Synchronization effects!)

