Interacting Quantum Trajectories and Dwell Times for Particles with Spin ½

Richard Lombardini¹ and Bill Poirier²

¹St. Mary's University (San Antonio, TX) ²University of Vermont (Burlington, VT)

- 1. R. Lombardini and B. Poirier. Interacting quantum trajectories for particles with spin 1/2. [Molecular Physics **122**, e2334805 (2024)].
- 2. B. Poirier and R. Lombardini. Dwell times, wavepacket dynamics, and quantum trajectories with spin 1/2. [Entropy **26**, 336 (2024)].

Introduction

Traditional Quantum Mechanics

De Broglie-Bohm (dBB)

Interacting Quantum Trajectories (IQT)

- In IQT, B. Poirier [Chem. Phys. **370**, 4-14 (2010)] found a way to treat "...the trajectory ensemble itself as the fundamental quantum entity" (pg. 5).
- · Quantum effects manifest as interactions among trajectories.

Pauli Equation

•
$$i\hbar \frac{\partial \overline{\psi}}{\partial t} = \widehat{H} \vec{\psi}$$

where $\widehat{H} = \frac{1}{2m} \left(\frac{\hbar}{i} \nabla - q\mathbf{A}\right)^2 + qV - \frac{q\hbar}{2m} \mathbf{B} \cdot \boldsymbol{\sigma}$

Probability flux

$$\mathbf{j} = \frac{\hbar}{2mi} \left(\vec{\psi}^{\dagger} \nabla \vec{\psi} - \nabla \vec{\psi}^{\dagger} \vec{\psi} \right) - \frac{q}{m} \mathbf{A} \rho + \frac{1}{m} \nabla \times (\rho \mathbf{s})$$
 where $\rho = \vec{\psi}^{\dagger} \vec{\psi}$ and $\mathbf{s} = \frac{\hbar}{2\rho} \vec{\psi}^{\dagger} \boldsymbol{\sigma} \vec{\psi}$

• Flow velocity $\mathbf{v} = \mathbf{j}/\rho$

dBB Approach

- Developed in late 80s by C. Dewdney, P. R. Holland, A. Kyprianidis, and J. P. Vigier.
- Madelung-Bohm polar form ansatz combined with Bloch-like spinor $\vec{\chi}$ (single particle case)

$$\vec{\psi} = Re^{iS/\hbar}\vec{\chi}$$
 where $\vec{\chi} = \begin{pmatrix} \cos\frac{\theta}{2}e^{i\frac{\phi}{2}} \\ \sin\frac{\theta}{2}e^{-i\frac{\phi}{2}} \end{pmatrix}$

- Four real functions of space and time: $R(\mathbf{r},t)$, $S(\mathbf{r},t)$, $\theta(\mathbf{r},t)$, and $\phi(\mathbf{r},t)$
- Move from Eulerian to Lagrangian picture: $\mathbf{v} = \frac{d\mathbf{r}}{dt} = \dot{\mathbf{r}}$

dBB Approach

- Four (coupled) time-evolution equations involving wavefunction
- For the free 1D case:

$$m\ddot{x} = F_Q + F_{Q_S}$$

where
$$F_Q=-Q'$$
 and $Q=-rac{\hbar^2}{2m}rac{R''}{R}$

$$F_{Q_S} = -\frac{\hbar^2}{4m\rho} (\rho \phi'^2 \sin^2 \theta + \rho \theta'^2)'$$

IQT Approach

- Replace wavefunction $\vec{\psi}$ with ensemble of trajectories by introducing a new independent trajectory-labelling variable C.
 - $x(t) \to x(C,t), \ \theta(x,t) \to \theta(C,t), \ \text{and} \ \phi(x,t) \to \phi(C,t)$
 - $\rho(x,t) = \frac{1}{x^{(1)}(C,t)}$ where $x^{(1)} = \frac{\partial x(C,t)}{\partial C}\Big|_t$, or in general, $x^{(n)} = \frac{\partial^n x(C,t)}{\partial C^n}\Big|_t$
- Three (coupled) time-evolution equations not involving wavefunction
- For the free 1D case:

$$\begin{split} m\ddot{x} &= F_Q + F_{QS} \\ F_Q &= -\frac{\hbar^2}{4m} \Biggl(\frac{x^{(4)}}{[x^{(1)}]^4} - 8 \frac{x^{(3)}x^{(2)}}{[x^{(1)}]^5} + 10 \frac{\left[x^{(2)}\right]^3}{[x^{(1)}]^6} \Biggr) \\ F_{QS} &= -\frac{\hbar^2}{4m} \Biggl(\frac{\left[\phi^{(1)}\right]^2 \sin^2\theta + \left[\theta^{(1)}\right]^2}{\left[x^{(1)}\right]^3} \Biggr)^{(1)} \end{split}$$

IQT Approach

Stern-Gerlach experiment

$$m\ddot{z} = F_Q + F_{QS} + \mu_B B_0' \cos \theta$$

Quantum Spin Flipper (Free Spinor)

- With spatial interference
 - Two spin-up coherent Gaussian waves approach each other and overlap.

Quantum Spin Flipper (Free Spinor)

- Without spatial interference
 - Spin-up wave interacts with spin-down wave [spin flips—see (b)].

Quantum Spin Flipper (Free Spinor)

- IQT numerical calculations of free spinor with no interference
 - Used central finite difference approximation for derivatives in C.
 - Used Störmer-Verlet and Midpoint methods for time propagation.
 - NO WAVEFUNCTION NEEDED!!!

Stern-Gerlach Experiment

- Initial conditions: $\theta_0 = \frac{\pi}{4}$ rad and $\phi_0 = 0$
- $\cos^2 \frac{\pi}{8} \approx 85.36\%$ of silver atoms should measure spin-up.
- 9/10 or 90% trajectories end up in positive z region.

Stern-Gerlach Experiment

- IQT numerical calculations of Stern-Gerlach Experiment
 - Used central finite difference approximation for derivatives in C.
 - Used Störmer-Verlet and Midpoint methods for time propagation.
 - NO WAVEFUNCTION NEEDED!!!
 - Although, wavefunction can be recovered [see (d)].

Future Plans

- Improve upon numerical algorithms.
- Implement IQT on systems with multiple particles and spatial dimensions.
- Examine particles with higher spin.
- Develop IQT version of relativistic quantum mechanics for spin-1/2 particles.

Why Dwell Time?

• For time-dependent QM, 1D dwell time τ in interval $[x_L, x_R]$:

$$\tau = \int_{-\infty}^{\infty} \left(\int_{x_L}^{x_R} |\psi(x, t)|^2 \, dx \right) dt$$

- Derived from an actual Hermitian dwell time operator.
 - J. Muñoz et al. Dwell-Time Distributions in Quantum Mechanics. [Time in Quantum Mechanics **2**, 97-125 (2009)].
- Previous work on dwell time calculations using QTMs for 1D timeindependent stationary scattering applications.
 - L. Dupuy et al. Direct and accurate calculation of dwell times and time delays using quantum trajectories. [Phys. Lett. A **456**, 128548 (2022)].
 - L. Dupuy et al. Making sense of transmission resonances and Smith lifetimes in one-dimensional scattering: The extended phase space quantum trajectory picture. [Chem. Phys. **572**, 111952 (2023)].

Experimental Setup

- Inspired by dBB arrival time calculations for spin-1/2 particles
 - S. Das, M. Nöth, and D. Dürr. Exotic Bohmian arrival times of spin-1/2 particles: an analytical treatment. [Phys. Rev. A **99**, 052124 (2019)].

Spin state influences the quantum trajectory dynamics in dBB theory.

Experimental Setup

- We use same experimental setup except that:
 - Look at dwell-time distribution across trajectory ensemble x(C,t) where C is a trajectory label.
 - Consider bipolar wavefunction decomposition:

$$\psi = \psi_+ + \psi_-$$

B. Poirier. Reconciling Semiclassical and Bohmian Mechanics I. Stationary States [J. Chem. Phys. **121**, 4501-4515 (2004)].

Probability Density Propagation

Spin States Examined

- Similar to Das et al. work, two spin states examined:
 - Spin up
 - Trajectory dynamics in *z*-direction can be decoupled from (x, y).
 - Unipolar dwell times τ calculated for $\psi_z(z,t)$.
 - Bipolar decomposition of $\psi_z(z,t)$.
 - $\langle \tau \rangle = \tau_+ + \tau_- = 2\tau_\pm$
 - Regard z=0 as a $V\to\infty$ scattering center that reflects incoming ψ_- into outgoing ψ_+ in order to calculate τ^\pm .
 - Spin up-down
 - Unipolar dwell times considered only

Spin Up Dwell Time Results

• 3 intervals considered: [10,20], [0,4], and [0,0.4]

Interval	τ	$\langle au angle$	$ au_\pm$	$ au^\pm$	Δτ	Δau^\pm
[10, 20]	22.47	22.59	11.30	22.59	14.74	7.15
[0,4]	8.672	9.034	4.517	9.059	6.000	4.438
[0, 0.4]	0.089	0.905	0.452	0.906	0.076	0.486

Spin Up-Down Dwell Time Results

• Asymptotic interval considered: [10,20]

spin-up	N value $ au$ value	100	200	500	1000
case		21.99	22.20	22.38	22.47
spin-up-down case	N^3 value $ au$ value	5 ³ 19.82	20 ³ 21.58	46 ³ 21.40	