Understanding Cavity-Mediated Dynamics in Vibrational Polaritonic Chemistry

Muhammad R Hasyim¹

¹The Simons Center for Computational Physical Chemistry, New York University

03/12/2024

Introduction to Polaritonic Chemistry - Overview

Controlling chemical kinetics through confined electromagnetic fields

1

Introduction to Polaritonic Chemistry - Overview

Crystallization

Hirai, et al. Chem. Sci. (2021)

1

Lather, et al. Angew. Chem., Int. Ed (2019)

Controlling chemical kinetics through confined electromagnetic fields

Introduction to Polaritonic Chemistry - Polaritons

Formation of hybrid light-matter states called **polaritons**

Introduction to Polaritonic Chemistry - Polaritons

Crystallization

Hirai, et al. Chem. Sci. (2021)

Formation of hybrid light-matter states called **polaritons**

A unique multiscale problem!

- 1. Amplitude of light modes span microns in length-scale (affect coupling!)
- 2. A single mode couples to interacting molecules (collective)
- 3. Single-molecule vibrations must be treated accurately (quantum)

Motivation: Understanding Reaction Modification

 Experiments document suppression and enhancement of rates. Why?

Motivation: Understanding Reaction Modification

HEOM calculations reveal modest enhancement (Hu, Ying, Huo, J. Phys. Chem. Lett. (2023))

- Experiments document suppression and enhancement of rates. Why?
- Scale up to atomistic, many-molecule limit?
- Use mixed $\hat{q} \overline{u}_{a} \hat{H}_{M} + \hat{H}_{a} \hat{s} \hat{s} \hat{t} \hat{c} \hat{a}^{b} (MQC)$ simular $\hat{H}_{M} = \frac{\omega_{b}^{4}}{16E_{b}} \cdot \hat{R}^{4} \frac{1}{2}\omega_{b}^{2} \cdot \hat{R}^{2}$ $\hat{H}_F = rac{1}{2} {\hat{p}}^2 + rac{1}{2} \omega_{
 m c}^2 igg(\hat{q} + \sqrt{rac{2}{\omega_c}} \eta_c \hat{R} igg)$ $\hat{H}_b = rac{1}{2}\sum_i \left| \hat{p}_i^2 + \omega_i^2 igg(\hat{x}_i - rac{c_i}{\omega_i^2} \hat{R} igg)^2
 ight|$ $+rac{1}{2}\sum_{ar{\cdot}}\left|\hat{ ilde{p}}_{j}^{2}+ ilde{\omega}_{j}^{2}igg(\hat{ ilde{x}}_{j}-rac{ ilde{c}_{j}}{ ilde{\omega}_{i}^{2}}\hat{q}_{ ext{c}}igg)^{ ilde{-}}
 ight|$

Motivation: Understanding Reaction Modification

- Experiments document suppression and enhancement of rates. Why?
- Scale up to atomistic, many-molecule limit?
- Use mixed quantum classical (MQC) simulations

Main Problem

How to reach quantitative accuracy (towards HEOM's modest predictions)?

MQC methods overpredict the rate enhancement! (Hu, Ying, Huo, J. Phys. Chem. Lett. (2023))

First Strategy: Which Dynamics Method to Use?

E

Quantum:
$$\dot{c}_{\mu} = -i \sum_{\nu} E_{\mu\nu}(\mathbf{q}) c_{\nu}$$
, or $\dot{c}_{m} = -i E_{m}(\mathbf{q}) c_{m} - \sum_{j} \frac{p_{j}}{m_{j}} \sum_{n} d_{mn}^{j}(\mathbf{q}) c_{n}$
Classical: $\dot{q}_{j} = p_{j}/m_{j}$, $\dot{p}_{j} = F_{j}(\mathbf{q})$
Mean-field
Classical DOFs evolve in an
averaged PES
 $F_{j} = -\langle \psi | \nabla_{j} \hat{E}(\mathbf{q}) | \psi \rangle$
 $F_{j} = -\nabla_{j} E_{a}(\mathbf{q})$

Mapping Approach to Surface Hopping (MASH)

$$F_{j} = -\nabla_{j} E_{a}(\mathbf{q}) - \sum_{n} \Delta E_{na}(\mathbf{q}) \delta \left(\mathbf{q} - \mathbf{q}_{na}\right) \delta_{na}^{j}$$
$$a = \arg \max_{n} \{\rho_{n}\}$$

Mannouch and Richardson JCP (2023); Runeson and Manolopoulos JCP (2023)

Second Strategy: Quantum or Classical Photon?

- So far, we treated the photon classically.
- But the cavity mode is quantum mechanical in nature!

Second Strategy: Quantum or Classical Photon?

- So far, we treated the photon classically.
- But the cavity mode is quantum mechanical in nature!
- Challenge: At very strong coupling, high number of Fock states is needed!
- Solution: Polaron transform

$$\hat{H}' = \hat{U}_{\rm PL}^{\dagger} \hat{H} \hat{U}_{\rm PL}$$
 where $\hat{U}_{\rm PL} = e^{i\hat{q}_0\hat{p}_{\rm c}}$

Results

- MASH with classical cavity mode leads to immediate improvement, but not enough
- Quantum cavity mode improves both Ehrenfest and MASH calculation
- Modest rate enhancements (less than two times)

Problem 2: Quantum or Classical Photon?

- So does MASH offer no further improvement than Ehrenfest?
- MASH predicts the **absolute rate** better than Ehrenfest!

Key Point

Use MASH and quantum cavity mode to reach more quantitative accuracy

Motivation: Beyond Reactivities in Polaritonic Chemistry

We see evidence of reaction rate modifications, but what about **diffusivity, viscosity**, **thermal conductivity**?

Transport properties of organic and inorganic systems collapsible to one master curve. Elmatad, et al. *J. Phys. Chem.* (2009) Study supercooled liquids because . . .

L. Unique yet ubiquitous

Motivation: Beyond Reactivities in Polaritonic Chemistry

We see evidence of reaction rate modifications, but what about **diffusivity, viscosity**, **thermal conductivity**?

Spontaneous crystallization of supercooled water. Source: youtu.be/OCRnmBGI-BE

Study supercooled liquids because . . .

- 1. Unique yet ubiquitous
- 2. Supercooled state precedes crystallization

Experiments are already exploring cold temperatures! Nelson and Weichman JCP (2024)

Motivation: Beyond Reactivities in Polaritonic Chemistry

We see evidence of reaction rate modifications, but what about **diffusivity, viscosity**, **thermal conductivity**?

Supercooled Lennard-Jones fluid in two-dimensions. Color is displacement magnitude. Study supercooled liquids because . . .

- 1. Unique yet ubiquitous
- 2. Supercooled state precedes crystallization
- 3. A playground of collective dynamics

Main Question

Is transport or relaxation in supercooled liquids slower/faster in microcavities?

Choosing a Model Supercooled Liquid System

Candidate Systems to Study

 \checkmark "Simple" vibrational spectrum X Easy to crystallize

Glycerol \checkmark Resist crystallization X Complicated vibrational spectrum

Solution:

10

Results: IR Spectra and Polariton Formation

• Formation of vibrational polaritons with increasing coupling strength ε

Results: IR Spectra and Polariton Formation

- Formation of vibrational polaritons with increasing coupling strength ε
- Blue-shifting and intensity increase of second peak.

Measuring Relaxation from Supercooled Liquids

 See how fast density field fluctuations relax:

$$F(\mathbf{k},t) = \frac{1}{N} \left\langle \rho_{\mathbf{k}}(t) \rho_{-\mathbf{k}}(0) \right\rangle$$

Slowdown in dynamics as we increase coupling strength!

Measuring Relaxation from Supercooled Liquids

 See how fast density field fluctuations relax:

$$F(\mathbf{k},t) = \frac{1}{N} \left\langle \rho_{\mathbf{k}}(t) \rho_{-\mathbf{k}}(0) \right\rangle$$

- Slowdown in dynamics as we increase coupling strength!
- Bumps in relaxation time
- Coincide with the ultra-strong coupling regime

Future Direction: Understanding Collective Effects

Acknowledgements

What causes the bumps in relaxation

time? Is it a collective effect?

Acknowledgements: Arianna N. Damiani and Norah M Hoffmann (NYU)

Other surface hopping methods? Can we

improve MASH+q even further?

Acknowledgements: Arkajit Mandal (Texas A&M) David R Reichman (Columbia)

Acknowledgements

More at CCQ NYU Light Matter Seminar (tomorrow, 03/13 11 AM EST) Contact me for Zoom access and details (mh7373@nyu.edu)

Acknowledgements: Arianna N. Damiani and Norah M Hoffmann (NYU)

Other surface hopping methods? Can we

improve MASH+q even further?

Acknowledgements: Arkajit Mandal (Texas A&M) David R Reichman (Columbia)

