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 corrections to semiclassical transmission probabilitiesℏ2



•Kemble derived a semiclassical expression for the energy dependent transmission probability through 
a potential barrier : 


                        


where  is the Euclidean action on the upside-down potential energy surface . 


There is however a fundamental problem with Kemble’s expression for the energy dependent 
transmission probability   . When the energy  equals the barrier height  , the action 

 and the resulting transmission probability is , which we call the half point . 

This is independent of the form of the barrier . However , in reality this is not the case, implying 
that an improvement of the uniform theory is needed.
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       Miller’s VPT2 theory 
• Miller and co-workers used the uniform expression in conjunction with vibrational perturbation theory (VPT) to 
evaluate transmission probabilities for various systems .


• In the VPT2 theory , the action of the unstable orbit , whether the energy is above or below the barrier height , is 
obtained from the quadratic expansion of the energy about the saddle point energy in terms of the action of the 
orbit using the quantum second order vibrational perturbation theory . 





 zero point energy shift , which modifies the barrier height of the potential.

 - defines the stable normal mode frequencies 
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             is the “effective barrier frequency” . 


However , we know that the VPT2 theory is not precise for the deep tunneling regime , especially when the 
potential is asymmetric .
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            Yasumori - Fueki Thought

Alternatively,  especially for the Eckart barrier , Yasumori and Fueki (YF) used Eckart’s idea to replace the 
 terms in the exact transmission probability of the Eckart barrier with the   leading to an 

expression which gives thermal transmission coefficients which are better than Kemble’s expression using 
the Euclidean action. 


      For the symmetric Eckart barrier the YF modification is as follows 
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• Wigner (1932) : derived a leading order  correction term for the thermal transmission 
coefficient 


   (Consider  as the  derivative of the potential at the barrier top)


              (valid only for symmetric barriers)


• Pollak and Cao (2022) : Generalised the above expression for any barrier


       


Note that   : both the leading order asymmetric and symmetric anharmonic terms lead 
to an increase of the thermal transmission factor , as compared to the parabolic barrier result. 
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• Modified VPT2 theory (mVPT2) 

                         


After some tedious algebra, we find the energy shift to be  (which is the 


correct  dependent parameter ) which is just the zero point energy shift observed in the VPT2 theory defined by 
Miller !


• Modified Yasumori-Fueki theory (mYF) 

                             


where  is also dependent on  .  
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We note that the fourth derivative for the Eckart barrier is positive  . Using this information , 
the expressions for the transmission probability are


                                   


              


where   is defined to ensure that the transmission coefficient is continuous at 
 . 
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Multidimensional mVPT2 and mYF theories 
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Instanton energy (eV) Color code

0.30 Blue

0.35 Orange

0.37 Green

0.39 Red

0.40 Purple

Collinear  reaction H + H2



T(K) Exact Rates mVPT2 Rates mYF Rates

1500 23931 24410 (2%) 23421 (2.1%)
1000 7482.1 7721.4 (3.2%) 7182.8 (4%)
600 867.67 905.46 (4.36%) 796.53 (8.2%)
300 6.9109 7.6711 (11%) 5.8327 (15.6%)
200 0.10482 0.12197 (16.36%) 0.08381(20.1%)
150 3.8991E-03 4.7349E-03 (21.41%) 2.8282E-03 (27.47%)



Instanton energy (eV) Color code

0.30 Blue

0.33  yellow

0.35 green

0.37 red

0.39 purple

0.41 brown

Collinear  reaction D + H2



T(K) Exact Rates mVPT2 Rates mYF Rates

1500 15867 16265 (2.5%) 15540 (2.7%)
1000 4633.1 4832.3 (4.3%) 4418.5 (4.6%)
600 452.18 484.74 (7.2%) 411.48 (9%)
300 2.2595 2.6014 (15%) 1.8202 (20.4%)
200 1.9798E-02 2.3757E-02 (22.74%) 1.4519E-02 (29.61%)
150 3.70228E-04 4.6467E-04 (29.7%) 2.4351E-04 (34.23%)





                  Summary
• The half point problem inherent to Kemble’s expression has been solved. 


• Two solutions have been presented : one which shifts the energy scale of the action (mVPT2) and one 
which shifts the action directly (mYF).


• Importance of  , which is a correction term dependent on  appearing in the VPT2 theory is seen.


• Application to Eckart barriers shows the power of the mVPT2 and mYF theories.


• Both mVPT2 and mYF theories have been extended to calculate thermal rates of collinear chemical 
reactions “on-the-fly”. Results indicate that the mVPT2 and mYF theories account for the correct  limit at 
high temperatures. In low temperatures as well , the rates are better than the RPMD rates , atleast for the 

 case , exemplifying the importance of  . 


• One can in principle calculate the  expansion for the thermal transmission coefficient , but it will require 
derivatives of the potential up to eighth order at the barrier top. This has been implemented at least in 1D 
cases , however implementing it in more than 1D “on the fly” requires that the derivatives up to eighth 
order be accurate and implementing this with the present level of quantum chemistry codes is in itself a 
challenging problem. 
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