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Outline:

v Infroduction: Surface-plasmon resonances & Purcell effect

v Surface-plasmon Purcell enhancement of quantum dot
emission in hear-IR felecom spectral bands

v Nonlinear lasing/light amplification in quantum dot arrays
interacting with Ag-nanopillar lattices

v Parametric Amplification & Spontaneous parametric
downconversion (PDC) in arrays of Au-metal nanoparticles

v Summary & outlook
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effect

* In metals according to Drude response model
electron gas plasma resonance frequency
(UV) depends on electron concentration
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* For surface plasmons geometry /nano- structuring allows to tune the
resonance frequency within visible spectral range
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Purcell effect: enhancement of
spontaneous decay for a quantum
emitter (quantum dot, molecule, etc.)
in the vicinity of metal nanoparticle
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Classical interpretation: Metal polarization

produces image dipole whose field
interacts with the transition dipole

Quantum interpretation: enhancement of
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local photon DOS due to plasmon
enhanced electromagnetic field density of
state



Spinel metal oxide: Fe;O, nanocrystals (NCs) as building blocks for near-
IR telecom band plasmonics

Most of surface plasmon resonances of noble metal nanoparticles and nanoparticle arrays cover
visible spectral range. It is desirable to achieve plasmonic response in the near-IR, i.e., telecom
band, for optoelectronic applications, including room-T single photon sources.
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Simulated and measured Purcell enhancement rates for array of PbS/CdS QDs on top of Fe;O,

NCs

- Purcell enhancement factoris the

-Experimental spectra: Absorption of Fe;O, NCs

& PL of PbS/CdS QDs
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- For the light emitting application
purpose we need to know the
radiative Purcell factor y,./y2.
where y, is the radiative decay
rate of QDs in the presence of
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Most of the emitted energy is dissipated to heat, radiative

factor is low requiring improved design of plasmonic cavity
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- Modeling total Purcell factor for

different spacers
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Purcell enhancement of quantum dot emission rate using Fe;O, patch
antenna

Radiative Enhancement with h = 30nm

o 18 35 4 Purcell Enhancement with h = 30nm
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Electric field (logarithmic), radiation pattern at 1176.9362 nm

* The radiative enhancement is low when close to the cube and is

maximized when closer to the substrate.

* As the QD moves away from the cube, the nonradiative decay rate
quickly decreases. Just above the substrate, most of the total
decay rate is radiative in nature.

e Experimental validation is pending




Quantum & nonlinear plasmonics in strong coupling regime

Quantum plasmonics:

Purcell effect (plasmon-enhanced spontaneous emission)

Lasing & superradiance
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Quantum plasmonics
M. S. Tame'*, K. R. McEnery'2, S. K. Ozdemir3, ). Lee4, 5. A. Maier'™ and M. S. Kim?

‘Quantum plasmonics is a rapidly growing field of research that involves the study of the quantnm properties of light and its

interaction with matter at the nanosﬂle Here, surface p coupled to electron charge
density waves on metal-di localized on metallic ble the of light to scales
far below that of conventional optics. We review recent progress in the d and igation of the

quantum properties of surface plasmons, their role in controlling light-matter interactions at the quan!um level and potential
appllcatlons ‘Quantum plasmonics opens up a new frontier in the study of the fundamental physics of surface plasmons and
the ion of quanti devices, i ing single-photon sources, transistors and ultra-compact circuitry at the
nanoscale.
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ABSTRACT: The tailored spatial polarization of coherent light beams is important
for applications ranging from microscopy to biophysics to quantum  optics.
Miniaturized light sources are necded for integrated, on-chip phatonic devices with
desired vector beams; however, this issuc is unresolved because most lasers rely on
bulky optical clements to achieve such polarization control. Here, we report on
quantum dot-plasmon lasers with enginecred polarization patterns controllable by

near-field coupling of colloidal quantum dots to metal nanoparticles. Conformal
coating of CdSe~CdS core—shell quantum dot flms on Ag nanoparticle lattices
enables the formation of hybrid waveguide-surface lattice resonance (W-SLR) modes.
The sidebands of these hybrid modes at nonzero wavevectors facilitate directional
Lasing emission with either radial or azimuthal polarization depending on_ the P tancn
thickness of the quantum dot film.

KEVWORDS: lattice plasmons, surface lattce resonances, wawgiade, band structure engincering, collidal quantum dots, nanolaser,
radially and azimuthally polarization states

PHYSICAL REVIEW RESEARCH 2, 013141 (2020)
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Hybrid photonic-plasmonic nanostructures allow one (o engineer coupling of quantum emitters and cavity
od i i i diated dissipati i i

plasmonic Dicke model, we explore the nonequilibrium phase diagram with respect to these interactions, The
analysis shows thal their interplay results in the extension of the superradiant and regular lasing states 1o the
dissipative coupling regime and an emergent lasing phase without population inversion having a boundary
with the superradiant and noemal states. Calculated photon emission spectea are demonstrated 1o carry distinct
signatures of these phases.
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Dual-Wavelength Lasing in Quantum-Dot
Plasmonic Lattice Lasers

Jan M. Winkler, Max ). Ruckriegel, Henar Rojo, Robert C. Keitel, Eva De Leo, Freddy T. Rabouw,
and David J. Nomis*
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the periodic particies provided feedback at a single resomance wavelength, and
orpnk dremolecales wee wied the galn matertl. Here, e nrodoce s Gecible |
template-based fabrication method that allows & brosder design space for Ag
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wbstrate

(Qs), which

y and wavelength tunabi
the substrate and the

Q- e Exploiing these capabilties, we demonstrte ot only single

wavelength s

0 output wavelengths from this laser can be selected individually using 3 linear polarizer.

Second, by adjusting the QD-flm thickness, we use higher-onder transverse waveguide moles in the QD film to obtain dual-
wavelength lasing at normal and off-normal angles from a symmetric square aray. We thas show that our approach offers
various design possibilities to tune the laser output.

KEYWORDS : plasmonics, manclase, collidal quantum dots, surfoc latice resomances, template stripping, duslwavelength laser,

polarization

Nonlinear optics of plasmonic nanostructures

Optical bistabilities

Harmonics generation

Four-wave mixing

e
500.nm
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H. Maekawa, et. al., Wavelength and polarization dependence of second-harmonic responses

from gold nanocrescent arrays, J. Phys. Chem. C 124, 20424 (2020).

We infroduce nonlinear plasmonoic cavity & examine the effect of Qks on SHG/PDC;

- Use both: guantum optics & semiclassical plasmonic models




Driven-dissipative dynamics in y(¥-nonlinear plasmonic cavity:
Second-harmonic generation (SHG) and QD gain effect

Incoherent
pump

————————————————————————————— Eq.: (2w
Ei\(w) |r M o v el o MNE ‘:ﬂ() e Beyond previously considered effects, we
-: spp | — introduce the non-linear )((2) -response of
——————————————————————————— » Eout(w) MNPs.
e Array of metal nanoparticles (MNPs) forms a collective mode e Weak probe field E ;,,(w) initiates second-
named the Surface Lattice Resonance (SLR) harmonic generation, E ,,;#(2w), associated
e Compared to Local Surface Plasmon Resonances (LSPR) of with combined of SLR and QEs response

each MNP, the SLR shows narrow lineshape (low losses), i.e.,

higher-Q cavity mode. e Incoherent pump the QDs above population

inversion results in the optical gain whose
effect we want to understand on the second

e Ensemble of IV, quantum emitters (QE)/ quantum dots (QD) T
harmonic signal E ;;,{2w).

or dye molecules interacts at fundamental frequency w
with the SLR cavity mode with coupling rate ./ N, A

M. Sukharev, O. Roslyak, & A. P., J. Chem. Phys. 154, 084703 (2021).



Strong coupling regime: Exciton-plasmon-polaritons

Weak plasmonic anharmonicity Strong plasmonic anharmonicity
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Above critical coupling (strong coupling regime) N,A% ~ ysp¥, :

A. Rabi splitting observed but QE gain partially
compensates losses

B. No lasing transition / polariton splitting &

A. No Rabi splitting observed but QE gain fully
compensates losses for low-polariton

B. Lasing transition / Incident field amplification namowing of absorption line

C. Amplified polariton field converts into SH via C. Polariton field receives partial amplification by
x¥@-nonlinear process resulting in SHG strong anharmonicity enhances y®-nonlinearity
efficiency enhancement ~ 10° boosting SHG efficiency ~ 103

M. Sukharev, O. Roslyak, & A. P., J. Chem. Phys. 154, 084703 (2021).



Simulations of amplified SHG in Ag-lattice coupled to layer of CdSe QEs
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Simulations of SHG and DFG (THz pulses) for Au MNP possessing C,, symmetry

Geometry & linear response
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Power spectra
of nonlinear
response:
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Normalized SHG intensity along natural (u, v)-axis for C,, MNP
as function of pump polarization & energy:
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SHG field depends on the pump field polarization as
E, ~x% E,E, +x(2) E,E,

|dentifying three independent second-order susceptibility
tensor components:
(2) %X(z) (2) — (2)

uuu uvv vUVU vUv

M. R. Clark, S. A. Shah, A. P., M. Sukharev, J. Chem. Phys 161 104107, (2024).




DrG & paramertrnc amplncarion in L-snaped Au-nanopariticie array /A =

400nm

Considered array of non-interacting L-shaped MNPs (lattice
resonances are not significant compared to local surface plasmon
resonances). Treated array as an effective medium, we evaluated
parametric gain and identified conditions for the parametric
amplification regime
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medium
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T en [T T e
Generated ke =& Transmitted
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We have performed simulations of surface-plasmon gain enhanced
parametric amplification processes

The simulations demonstrate that a multi-layered structure d~500nm can
support the signal amplification regime

Evaluations of Spontaneous Parametric Down-Conversion (SPDC)
processes in Au-MNP arrays resulting in quantum photon generation
require quantum optical simulations

S. Shah, M. R. Clark, J. Zyss, M. Sukharev, A. P., Opt. Lett. 49 1680 (2024).
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Modeling of SPDC in C,, Au-nanoparticle array with intrinsic nonlinearity

e Central quantity describing the biplasmon/biphoton
e Surface plasmon enhanced SPDC process:

wp ~ 2Wsp

\ &

e Two biplasmon/biphoton states can be prepared by the
pump, respectively polarized along u and v axes:
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S. A. Shah, M. R. Clark, J. Zyss, M. Sukharev, A. P., (in preparation).
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Calculation of SPDC Yield for L-shaped Au-nanoparticle array A = 400nm via

*  Besides the parametric amplification processes reported a year
ago we considered the SPDC process of creating the signal &
idler photons out of vacuum plasmon vacuum fluctuations

Incident ¢, em,,,z

vis-pump

</&

L__2 _ —
S ezkt (z—h)
Generated
IR-idler ki = (w, — w)/c

«  Level diagram y®-plasmonic response & SPDC process using
guantum anharmonic oscillator model

pump

wp ~ 2wWgp

SPDC yield.

To start with, we performed a semiclassical estimate of

SPDC Yield: # of signal/idler photons produced via

e ez InCident SPDC per # incident pump photons
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S. A. Shah, M. R. Clark, J. Zyss, M. Sukharev, A. P., (in preparation).



Comparison of calculated/measured frequency
entanglement entropy for BBO crystal & L-shaped Au-
nanoparticle array
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FIG. 4. Entropy calculated on SPDC maps with the gradual variation of angle «
from 0° to 5° with 0.25° steps. Different configurations of PM are considered:
collinear geometry in PPLN with two different poling periods (PP), non-collinear
Type | in BBO crystals and, non-Collinear Type Il in BBO crystals with different &8
angles.

Entanglement entropy extracted from the
experimentally measured JSA for the BBO crystal was
reported to be much lower, $=0.78 (Type |)

and $=0.78 (Type Il).

L. Moretti, et. al., J. Chem. Phys. 159, 084301 (2023)
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Comparing with the calculations for Au MNPs at pulse
duration 200 fs (used in the experiment), the MNP produces
entanglement entropy S ~ 2 which is about two/three-fold
lower than that calculated for the BBO crustal but exceeds
the values obtained via experimental measurements.

S. A. Shah, M. R. Clark, J. Zyss, M. Sukharev, A. P., (in prep.).



Summary & Outlook:

We explored the use of spinel metal-oxide nanoparticles for plasmonic enhancement of
spontaneous spontaneous emission rate of PbS/CdS quantum dots. While layered structures
demonstrates about 10-fold Purcell enhancement, most of the energy is lost in heat.
Calculations show that patch antenna geometry allows to improve the radiative decay rate.

Our simulations demonstrated that strong coupling regime can be achieved between Ag-
nanopillar arrays leading to surface lattice resonance and assemblies of CdSe quantum dots.
This results in up to 10° enhancement of the SHG and possible to second harmonic lasing.
Experimental validation of our predictions are underway by our collaborators.

Finally, we considered parametric amplification and quantum photon generation via SPDC in
arrays of Au nanoparticles with C,, symmetries. While the parametric amplification requires
multi-layered structure, single layer demonstrates SPDC performance comparable with
standard BBO crystal source of entangled photons. Our calculations need further experimental
validations.

Currently, we are exploring the effect of plasmonic cavities on the exciton state in 2D TMD
materials and more generically the polariton polariton processes in vdW-materials constitute
our near-term work.
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