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Background & Mofivation

» Following inner-shell ionization within molecular systems, electrons can undergo
competing ultrafast relaxation pathways:
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» Following inner-shell ionization within molecular systems, electrons can undergo
competing ultrafast relaxation pathways:

C

/ Auger-Meitner \ /

Decay

£l

Intermolecular \
Coulomb Decay

=4
I

Electron-Transfer
Mediated Decay

=1,
<-|—<-—

Auger
H,0t*—>H,02%*" + e~

ICD
Hzo + H20+*_)H20+ + H20+ + e_

ETMD
H20 + H20+*—)H202+ + H20 + e_



Background & Mofivation

» These relaxation pathways generate secondary ionized low-energy electrons (LEES),

which can perform highly reactive downstream chemistry

» Understanding these ultrafast mechanisms could lead to new technologies for cancer
prevention and targeted destruction of biomolecules
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Methods: RT-TDDFT + CAP

» Real-Time Time Dependent Density Functional Theory (RT-TDDFT) solves
for the time evolution of the 1 electron reduced density matrix

Pj = <l|1
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Methods: RT-TDDFT + CAP

» Real-Time Time Dependent Density Functional Theory (RT-TDDFT) solves
for the time evolution of the 1 electron reduced density matrix

Pj = <l|1
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» lonization of an electron to the free particle continuum is approximately
treated using a complex absorbing potential (CAP)
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Methods: RT-TDDFT + Ehrenfest

» Ehrenfest dynamics assumes nuclear moftion follows the expectation value
of the electronic energy

E(R) = (Y| HR) |y)

» The mean-field nuclear gradients are:

d
= ———E(R
Fa R, (R)



Collaboration: Water Dimer Project

» Our experimental collaborators are looking at the fragmentation products
of water dimers following ionization of the 2al inner-valence orbital on the
oxygen atom

» Following excitation, water is expected to undergo ICD followed by
coulomb explosion of the dimer

» Experimental data includes kinetfic energy releases of the ionized electrons
as well as the nuclear fragments following coulomb explosion
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Collaboration: Water Dimer Project

Our goal is to predict the non-radiative pathways and
downstream fragmentation products along with kinetic energy
release through our RT-TDDFT + CAP + Ehrenfest methodology




Methods: Computational Workflow

» Motivated by our experimental collaborators looking at ICD within water
dimers, the full calculation can be separated into three distinct parts:

1.  NVT thermostated ab-initio molecular dynamics at 30 K
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Methods: Computational Workflow

» Motivated by our experimental collaborators looking at ICD within water
dimers, the full calculation can be separated into three distinct parts:

1.  NVT thermostated ab-initio molecular dynamics at 30 K
2. Remove inner-valence 2al electron, run RT-TDDFT + CAP + Ehrenfest

3. After ultrafast mechanism switch over to Born-Oppenheimer Molecular
Dynamics (BOMD) for bifurcation and fragmentation




Results: Proton Acceptor lonization
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Results: Proton Acceptor lonization
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Results: Proton Acceptor lonization
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Results: Proton Acceptor lonization
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Results: Proton Acceptor lonization
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Results: Proton Donor lonization




Results: Proton Donor lonization
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Results: Proton Donor lonization
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Results: Proton Donor lonization
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Results: Proton Donor lonization
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Results: Decoherence & Fragmentation

» After ultrafast mechanism, we switch over 1o BOMD to account for lack of
decoherence and bifurcation within Ehrenfest



Results: Decoherence & Fragmentation

» After ultrafast mechanism, we switch over 1o BOMD to account for lack of

decoherence and bifurcation within Ehrenfest
» From BOMD we predict final fragmentation products and kinetic energy

release (KER) of the fragments
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Conclusions

» Through RT-TDDFT + CAP + Ehrenfest we were able to predict two distinct
pathways depending on which water molecule is excited:
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Conclusions

» Through RT-TDDFT + CAP + Ehrenfest we were able to predict two distinct
pathways depending on which water molecule is excited:

ICD
Acceptor: D,0"* +D,0—D,0" + D,0%
PT Auger
Donor: D,0 + DOD**—D;0" + OD*——D,0" + OD*

» We predict a new plausible mechanism for ICD within water dimers in the
case of proton donor excitation consistent with our experimental
collaborators and the literature
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