Atomistic Understanding of Plasmon Mediated Photochemical Reactions

Yu Zhang

Physics and Chemistry of Materials (T-1)

Theoretical Division, Los Alamos National Laboratory

LA-UR-20-30317

Plasmonics

Plasmon-mediated Chemistry

Enhance direct intramolecular excitation	Science, 526, 521 (2018), JPCC, 121, 7421 (2017), Nat. Commun. 7, 10545 (2016)
Direct charge transfer	J. Am. Chem. Soc. 134, 14238 (2012) J. Am. Chem. Soc. 136, 4343 (2014) ACS Nano, 10, 6108 (2016), Science, 349, 632 (2015)
Indirect hot-electron transfer.	Nano Lett., 13, 240(2013), Nat. Mat. 11 , 1044 (2012) Nat. Chem. 3, 467 (2011), Nano Lett., 18, 2189 (2018),
Local heating effect	JPCC 122, 5657 (2018), JPCC 122, 5040 (2018)

LABORATOR

EST.1943 -

Angew. Chem. Int. Ed. 58, 2 (2019)

Mechanisms of Plasmon-mediated Chemistry are unclear

• Plasmon mediated chemistry is complicated:

LABORATOR

EST.1943 -

H₂ dissociation as an example

EST. 1943

Plasmonic Hot-Carriers Induced H₂ Dissociation (Jellium Model)

Computational method:

- TDDFT-NAMD (Ehrenfest scheme)
- Jellium model for metallic NP (core electrons and the nuclei are modeled as the uniform positive background)

Y. Zhang, T. Nelson, S. Tretiak, GC Schatz, ACS Nano, 12, 8415 (2018)

Atomistic studies of plasmon mediated reactions

- Equilibrium geometry
 - $Z_{H-Au} = 1.91 \text{ Å}$
 - $R_{H-H} = 0.79 \text{ Å}$
 - Adsorption energy: 0.1 eV

H₂ dissociation has a high ground state reaction barrier (marked with red star) of 1.14 eV

Q. Wu, L. Zhou, G. C. Schatz, Y. Zhang*, H. Guo*, J. Am. Chem. Soc. 142, 13090 (2020)

Excited state PES

Quantum dynamics on adiabatic PES

Quantum dynamics simulations

$$H_{l} = -\frac{1}{2M_{R}}\frac{\partial^{2}}{\partial R^{2}} - \frac{1}{2M_{Z}}\frac{\partial^{2}}{\partial Z^{2}} + V_{l}(R, Z)$$

- *R* is the bond distance of H₂ molecule
- Z is the distance between the H_2 center-of-mass and surface.
- $V_l(R,Z)$ (l = g, e) are the potential energy

On these adiabatic states, probability for dissociation is very low

Spatial distribution of HOMO and 20 unoccupied MOs

Only a few MOs have $H_2 \sigma^*$ characteristics!

LABORATORY

EST. 1943 -

Excitation energies and corresponding oscillator strengths

These excitations are likened to HE states in metal nanoclusters.

EST. 1943

Excitations with antibonding characteristics of the H₂

Charge transfer (CT) states

Diabatic HE and CT states

Diabatic CT states have no barrier, while HE states have larger barrier for H₂ dissociation.

VISTA, Dec 17, 2020

FST 1943

Quantum dynamics on the diabatic states with CT

Potential profiles along the minimum energy pathway

Landau–Zener model in the adiabatic representation:

$$P_{ij} = \exp\left(-\frac{\pi\sqrt{m}}{2}\sqrt{\left|\frac{\Delta E_{ij}^{3}}{\frac{d^{2}}{dt^{2}}\Delta E_{ij}}\right|}\right).$$

- A random number ξ ∈ [0, 1] is generated and hopping is triggered when ξ > P_{ij}.
- Velocities are rescaled according to ΔE_{ij} after the hopping.

Among 500 trajectories, 27 led to dissociation of H2 dissociation, giving a probability of 5.4%

Summary & Future works

Physical picture of the plasmon mediated H_2 dissociation:

- A dense manifold of adiabatic excited states (dominated by HE states) are excited by plasmon
- Non-adiabatic transition from HE to CT states facilitates chemical reactions

Future direction:

• DFTB-NEXMD for simulating chemical reactions on realistic plasmonic NPs (>200 atoms): a) plasmon excitation; b) charge-transfer c) hot electron relaxation, d) heating..

Acknowledgement

Tammie Nelson (LANL)

Sergei Tretiak ((LANL)

George C. Schatz (NU)

Qisheng Wu

(UMN)

Hua Guo (UMN)

Funding

- DOE, Office of Basic Energy Sciences
- Air Force Office of Scientific Research
- Los Alamos National Lab, LDRD program

