
Mohammad Shakiba

SUNY Buffalo

Akimov Research Group

Nonadiabatic Molecular Dynamics with

Machine-Learned Kohn-Sham

Hamiltonian Mapping

2

Motivation

Assistant

Not a Replacement

3

• Single or multiple target prediction: Band gaps, nonadiabatic couplings, dipole moment etc

• Machine-learning potentials and forcefields, one-electron reduced density matrix prediction

• DeePMD, SchNorb, Schpacknet, Mlatom, QMLearn, Pyseqm, etc

Machine-learning in electronic structure calculations

Band

gap

Dipole

moment

Molecular

orbital

energies

Nonadiabatic

couplings

Excitation

energies

Total

energy

Density

Forces

• Atomic coordinates

and weights

• Potential and basis

set descriptors

• etc

Multiple convolutional,

max-pooling, and

dense layers

Feature vector

Properties

4

1. High price: High computational cost of both data generation and training, GPUs use huge electricity!

2. Non-uniqueness: High diversity of the neural networks architecture, producing the same physics while

there is a large difference between the degree of nonlinearities of the models

3. Overfitting problem: If not enough of data is provided overfitting occur

4. Lack generality: Only applicable to few atomic types and systems

5. Input diversity and complexity: Different studies provide different input descriptors, addition of new input

requires fine tuning the model which is time consuming

6. Reproducibility: Weight initialization and architecture, may stuck in a local minima

7. Lack of physical interpretability of the “black box”: We do not have a good physical interpretation of the

intermediate layers of the neural networks and feature vector, if we have we can design them better!

Machine-learning in electronic structure calculations

5

“Can we replace quantum chemistry and quantum dynamics equations obtained

during decades from human brains through reasoning with black box fitting models?”

“We can reproduce the results of the quantum chemistry and quantum dynamics with

machine-learning models within the data set they were trained on (interpolation) and

are prone to failure for new data sets!”

“These models just encode the patterns and properties of training data as matrix

operations (encoders), which they decode when called to make predictions.”

Critical questions and insights

“Maybe we should start rethinking about the

way we are using machine-learning in

quantum chemistry and quantum dynamics,

neither overestimating nor underestimating

the power of machine-learning models!

By being realistic!”

What do we propose?

“With the current models, it is very hard to

surrogate quantum calculations with ML!

Instead, we can assist them with ML

techniques!”

6

SCF WAVEFUNCTION OPTIMIZATION – B3LYP

Step Time (sec) Convergence Total energy

1 Guess/Diag. 5.7 1.59674484 -303.0327608067

2 Broy./Diag. 127.5 2.77154376 -300.5971213501

3 Broy./Diag. 127.6 0.72899999 -319.4950434194

4 Broy./Diag. 128.0 0.12822688 -324.5362792256

...

...

...

39 Broy./Diag. 129.4 0.00000115 -330.5351989565

40 Broy./Diag. 129.4 0.00000105 -330.5351976886

41 Broy./Diag. 128.7 0.00000057 -330.5351981531 Si75H64

Target the SCF cycle with machine-learning

7Shakiba, Akimov, J. Chem. Theory Compu., 2024, 8, 2992-3007

Input: 𝑯𝒏𝒐𝒏−𝑺𝑪𝑭,𝑷𝑩𝑬Nuclear

geometry

K
S

 o
rb

it
a
l

e
n

e
rg

ie
s
,
𝝐 𝒊𝝆𝒈𝒖𝒆𝒔𝒔 =

𝒊

𝝆𝒊
𝑨𝒕𝒐𝒎𝒊𝒄 Output: 𝑯𝑺𝑪𝑭,𝑩𝟑𝑳𝒀𝑷 KS orbitals 𝝍𝒊

1 2 3 4COMPLEX!

𝐻𝐵3𝐿𝑌𝑃,𝑆𝐶𝐹 𝑅 𝑡𝛼 = 𝐻𝐵3𝐿𝑌𝑃,𝑆𝐶𝐹 𝐻𝑃𝐵𝐸,𝑛𝑜𝑛−𝑆𝐶𝐹 𝑅 𝑡𝛼

=
𝛽=1

𝑁𝑡𝑟𝑎𝑖𝑛
𝑐𝛽𝐾 𝐻𝑃𝐵𝐸,𝑛𝑜𝑛−𝑆𝐶𝐹 𝑅 𝑡𝛼 , 𝐻𝑃𝐵𝐸,𝑛𝑜𝑛−𝑆𝐶𝐹 𝑅 𝑡𝛽

𝐾 𝑋, 𝑌 = 𝑋𝑌𝑇 𝒄 = 𝑲 + 𝜆𝑰 −1𝐻𝐵3𝐿𝑌𝑃,𝑆𝐶𝐹 𝑅 𝑡𝛼

What are the inputs?

8

• General: applicable to all systems

• Fast to compute: it’s already available in quantum chemistry packages

• Assigns a weight to the interaction of each atom with all other atoms

• More physically meaningful input features, even obtained at a low level of theory

Feature vector

Properties

𝐻, 𝜌, 𝑆

Atomic orbital matrices as direct “input features”:
Bypassing Neural Networks for feature extraction

9

Input: 𝑯𝒏𝒐𝒏−𝑺𝑪𝑭,𝑷𝑩𝑬
Output: 𝑯𝑺𝑪𝑭,𝑩𝟑𝑳𝒀𝑷

• Up to millions of elements for very large systems

• Pick the upper triangular part of the KS Hamiltonian matrix

due to symmetry

• Split them into multiple partitions

• Train a separate model for each partition → Each model can

be separately trained in parallel

• Rebuild the matrix and diagonalize it

Is this efficient?

10Shakiba, Akimov, JCTC, 2024, 20, 8, 2992-3007

Different partitioning methods

11

• Kernel ridge regressor with a linear kernel

• C60 fullerene with a GTO basis set size of 240

• Si75H64 with a GTO basis set size of 1039

• Step 1:

• Generate a precomputed nuclear trajectory with 2000 geometries with PBE functional

(similar to what is done in typical NA-MD simulations in nanoscale systems)

• Step 2:

• Equal partitioning of the input and target Hamiltonian matrices

• 30 partitions just for test!

• Step 3:

• Train the models for 50 (2.5%), 100 (5%), 250 (12.5%), 500 (25%), 750 (37.5%), 1000

(50%) randomly selected geometries

• Step 4:

• Use the model to generate the Hamiltonian matrices and molecular orbitals

𝑁𝐴𝑂

𝑁𝐴𝑂

𝑁𝐴𝑂(𝑁𝐴𝑂 + 1)

2

Models and the systems

12

• Mean absolute error of the following:

• 1- Total energy

• Feed back the ML molecular orbitals to the quantum

chemistry software

• 2- Molecular orbitals energies

• 3- Overlap of the ML and reference molecular orbitals

𝝐𝒊,𝒐𝒗𝒆𝒓𝒍𝒂𝒑 = 𝟏. 𝟎 − | 𝝍𝒊,𝑴𝑳|𝝍𝒊,𝒓𝒆𝒇 |

𝝐 =
𝟏

𝑵𝑴𝑶

𝒊

𝑵𝑴𝑶

𝝐𝒊

Error measures

13

• CP2K: Converged B3LYP, 529 sec

• CP2K: PBE atomic guess, 2.17 sec

• ML mapping: 0.08 sec

• Diagonalization: 0.1 sec

• ML training: 12 sec

Electronic structure results

* Except for CP2K calculations all

other calculations are done using

a single processor

Model trained on 12.5% of the data

14

• Excess energy relaxation dynamics

• Time scales from dynamics in ML MOs are in within the

error margin of the reference time scales

Shakiba, Akimov, J. Chem. Theory Compu., 2024, 8, 2992-3007

NA-MD with ML generated data
Model trained on 12.5% of the data

Model trained on 12.5% of the data

User interface for ML
mapping in Libra

15

Step 1: Data generation (distribute_jobs.py)

16

General variables

params['prefix']

params['trajectory_xyz_file']

params['user_steps']

params['njobs']

params['nprocs']

params['remove_raw_outputs']

params['submit_template']

params['software_load_instructions']

params['submit_exe’]

Guess calculations

params['do_guess']

params['guess_dir']

params['guess_input_template']

params['guess_software']

params['guess_software_exe']

params['guess_mpi_exe']

Reference calculations

params['do_ref']

params['reference_dir']

params['reference_input_template']

params['reference_software']

params['reference_software_exe']

params['reference_mpi_exe']

Distribute the single-point calculations

distribute_jobs(params)

Step 2: Training the models (1_train.py):

17

General variables

params['prefix']

params[‘path_to_input_mats']

params[‘path_to_output_mats']

params[‘path_to_trajectory_xyz_file']

params[‘path_to_sample_files']

params[‘input_proprty']

params[‘output_proprty’]

Models properties

params[‘kernel']

params[‘degree’]

params[‘alpha’]

params[‘gamma’]

params[‘scaler’]

params[‘partitioning_method’]

params[‘npartition’]

params[‘memory_efficient’]

params[‘train_parallel’]

Saving models

params[‘save_models’]

params[‘path_to_save_models’]

params[‘save_ml_hams’]

params[‘save_ml_mos’]

params[‘save_ao_overlap’]

Error analysis

params[‘do_error_analysis’]

params[‘save_ref_eigenvalues’]

params[‘save_ref_eigenvectors’]

params[‘path_to_save_ref_mos’]

params[‘compute_ml_total_energy’]

params[‘write_wfn_file’]

params[‘path_to_save_wfn_files’]

params[‘cp2k_ml_input_template’]

Overlap and time-overlap

calculations

params[‘compute_overlap']

params[‘nprocs']

params[‘is_periodic’]

params[‘A_cell_vector’]

params[‘B_cell_vector']

params[‘C_cell_vector’]

params[‘periodicity_type']

params[‘translational_vectors']

params[‘lowest_orbital']

params[‘highest_orbital']

params[‘res_dir']

Distribute the single-point

calculations

models, models_error, input_scalers,

output_scalers = train(params)

Step 2: Use the model (2_distribute_jobs.py):

18

==================== User inputs

Load the parameters used to train the model

with open("train_params.json", "r") as f:

 params = json.load(f)

Number of jobs to distribute the energy calculations

params["njobs"] = 20

Setup the steps to compute the properties for

params["steps"] = list(range(1000,3000))

Submit template file

params["submit_template"] = "submit_template.slm"

==================== End of user inputs

==================== Distributing the jobs over multiple nodes

distribute_jobs(params)

Summary

19

• A simple, efficient, and scalable ML approach for mapping non-self-consistent Kohn-Sham Hamiltonians

constructed with one kind of density functional to the nearly self consistent Hamiltonians constructed

with another kind of density functional.

• Speeds up the calculations by several orders of magnitude

• Is conceptually simpler than alternative ML approaches

• Is applicable to different systems and sizes and can be used for mapping Hamiltonians constructed

with arbitrary density functionals

• Requires a modest training data, learns fast, and generates molecular orbitals and their energies

with the accuracy nearly matching that of conventional calculations

• When applied to nonadiabatic dynamics simulation of excitation energy relaxation in large systems

yields the corresponding time scales within the margin of error of the conventional calculations

20

❖ Alexey V. Akimov (Chemistry UB)

❖ Daeho Han (Chemistry UB)

❖ Brendan Smith (Chemistry UB)

❖Wei Li (Hunan agriculture U)

❖ Lili Rassouli (Chemical Eng. UB)

❖Michel Dupuis (Chemical Eng. UB)

❖ Qingxin Zhang (Chemistry UB)

❖Matthew Durta (Chemistry South Carolina)

❖ Elizabeth Stippell (Chemistry UCLA)

❖ Jochen Autschbach (Chemistry UB)

❖ Adam P. Philips (Chemistry UB)

❖ Sophya Garaschuk (Chemistry South

Carolina)

❖Hamid Zabihi (Materials Eng. SBUK, Iran)

❖ Kosar Yasin (Chemistry UB)

❖ Layla Heidarizadeh (Chemistry UB)

❖ Xuyan Ma (Chemical Eng. UB)

❖ Amber Jain (India)

❖ Xiang Sun (NYU at Shanghai)

Acknowledgement

Current and Past Team Members and Collaborators:

Thank You!

Questions?

21

	Slide 1
	Slide 2: Motivation
	Slide 3: Machine-learning in electronic structure calculations
	Slide 4: Machine-learning in electronic structure calculations
	Slide 5: Critical questions and insights
	Slide 6: Target the SCF cycle with machine-learning
	Slide 7: What are the inputs?
	Slide 8: Atomic orbital matrices as direct “input features”: Bypassing Neural Networks for feature extraction
	Slide 9: Is this efficient?
	Slide 10: Different partitioning methods
	Slide 11: Models and the systems
	Slide 12: Error measures
	Slide 13: Electronic structure results
	Slide 14: NA-MD with ML generated data
	Slide 15: User interface for ML mapping in Libra
	Slide 16: Step 1: Data generation (distribute_jobs.py)
	Slide 17: Step 2: Training the models (1_train.py):
	Slide 18: Step 2: Use the model (2_distribute_jobs.py):
	Slide 19: Summary
	Slide 20: Acknowledgement
	Slide 21: Thank You! Questions?

