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Motivation

Assistant 

Not a Replacement
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• Single or multiple target prediction: Band gaps, nonadiabatic couplings, dipole moment etc 

• Machine-learning potentials and forcefields, one-electron reduced density matrix prediction

• DeePMD, SchNorb, Schpacknet, Mlatom, QMLearn, Pyseqm, etc

Machine-learning in electronic structure calculations
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1. High price: High computational cost of both data generation and training, GPUs use huge electricity!

2. Non-uniqueness: High diversity of the neural networks architecture, producing the same physics while 

there is a large difference between the degree of nonlinearities of the models

3. Overfitting problem: If not enough of data is provided overfitting occur

4. Lack generality: Only applicable to few atomic types and systems

5. Input diversity and complexity: Different studies provide different input descriptors, addition of new input 

requires fine tuning the model which is time consuming

6. Reproducibility: Weight initialization and architecture, may stuck in a local minima

7. Lack of physical interpretability of the “black box”: We do not have a good physical interpretation of the 

intermediate layers of the neural networks and feature vector, if we have we can design them better!

Machine-learning in electronic structure calculations
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“Can we replace quantum chemistry and quantum dynamics equations obtained 

during decades from human brains through reasoning with black box fitting models?”

“We can reproduce the results of the quantum chemistry and quantum dynamics with 

machine-learning models within the data set they were trained on (interpolation) and 

are prone to failure for new data sets!”

“These models just encode the patterns and properties of training data as matrix 

operations (encoders), which they decode when called to make predictions.”

Critical questions and insights

“Maybe we should start rethinking about the 

way we are using machine-learning in 

quantum chemistry and quantum dynamics, 

neither overestimating nor underestimating 

the power of machine-learning models! 

By being realistic!”

What do we propose?

“With the current models, it is very hard to 

surrogate quantum calculations with ML! 

Instead, we can assist them with ML 

techniques!”
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SCF WAVEFUNCTION OPTIMIZATION – B3LYP

Step        Time (sec)     Convergence     Total energy    

-------------------------------------------------------

1 Guess/Diag.  5.7       1.59674484     -303.0327608067

2 Broy./Diag.  127.5     2.77154376     -300.5971213501

3 Broy./Diag.  127.6     0.72899999     -319.4950434194

4 Broy./Diag.  128.0     0.12822688     -324.5362792256

.......................................................

.......................................................

.......................................................

39 Broy./Diag. 129.4     0.00000115     -330.5351989565

40 Broy./Diag. 129.4     0.00000105     -330.5351976886

41 Broy./Diag. 128.7     0.00000057     -330.5351981531 Si75H64

Target the SCF cycle with machine-learning
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Input: 𝑯𝒏𝒐𝒏−𝑺𝑪𝑭,𝑷𝑩𝑬Nuclear 
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𝑨𝒕𝒐𝒎𝒊𝒄 Output: 𝑯𝑺𝑪𝑭,𝑩𝟑𝑳𝒀𝑷 KS orbitals 𝝍𝒊

1 2 3 4COMPLEX!

𝐻𝐵3𝐿𝑌𝑃,𝑆𝐶𝐹 𝑅 𝑡𝛼 = 𝐻𝐵3𝐿𝑌𝑃,𝑆𝐶𝐹 𝐻𝑃𝐵𝐸,𝑛𝑜𝑛−𝑆𝐶𝐹 𝑅 𝑡𝛼

=
𝛽=1

𝑁𝑡𝑟𝑎𝑖𝑛
𝑐𝛽𝐾 𝐻𝑃𝐵𝐸,𝑛𝑜𝑛−𝑆𝐶𝐹 𝑅 𝑡𝛼 , 𝐻𝑃𝐵𝐸,𝑛𝑜𝑛−𝑆𝐶𝐹 𝑅 𝑡𝛽

𝐾 𝑋, 𝑌 = 𝑋𝑌𝑇 𝒄 = 𝑲 + 𝜆𝑰 −1𝐻𝐵3𝐿𝑌𝑃,𝑆𝐶𝐹 𝑅 𝑡𝛼

What are the inputs?
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• General: applicable to all systems

• Fast to compute: it’s already available in quantum chemistry packages

• Assigns a weight to the interaction of each atom with all other atoms

• More physically meaningful input features, even obtained at a low level of theory

Feature vector

Properties

𝐻, 𝜌, 𝑆

Atomic orbital matrices as direct “input features”: 
Bypassing Neural Networks for feature extraction
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Input: 𝑯𝒏𝒐𝒏−𝑺𝑪𝑭,𝑷𝑩𝑬
Output: 𝑯𝑺𝑪𝑭,𝑩𝟑𝑳𝒀𝑷

• Up to millions of elements for very large systems

• Pick the upper triangular part of the KS Hamiltonian matrix 

due to symmetry

• Split them into multiple partitions

• Train a separate model for each partition → Each model can 

be separately trained in parallel

• Rebuild the matrix and diagonalize it

Is this efficient?



10Shakiba, Akimov, JCTC, 2024, 20, 8, 2992-3007

Different partitioning methods
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• Kernel ridge regressor with a linear kernel

• C60 fullerene with a GTO basis set size of 240

• Si75H64 with a GTO basis set size of 1039

• Step 1:

• Generate a precomputed nuclear trajectory with 2000 geometries with PBE functional 

(similar to what is done in typical NA-MD simulations in nanoscale systems)

• Step 2:

• Equal partitioning of the input and target Hamiltonian matrices

• 30 partitions just for test!

• Step 3:

• Train the models for 50 (2.5%), 100 (5%), 250 (12.5%), 500 (25%), 750 (37.5%), 1000 

(50%) randomly selected geometries

• Step 4:

• Use the model to generate the Hamiltonian matrices and molecular orbitals

𝑁𝐴𝑂

𝑁𝐴𝑂

𝑁𝐴𝑂(𝑁𝐴𝑂 + 1)

2

Models and the systems
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• Mean absolute error of the following:

• 1- Total energy

• Feed back the ML molecular orbitals to the quantum 

chemistry software 

• 2- Molecular orbitals energies

• 3- Overlap of the ML and reference molecular orbitals

𝝐𝒊,𝒐𝒗𝒆𝒓𝒍𝒂𝒑 = 𝟏. 𝟎 − | 𝝍𝒊,𝑴𝑳|𝝍𝒊,𝒓𝒆𝒇 |

𝝐 =
𝟏

𝑵𝑴𝑶


𝒊

𝑵𝑴𝑶

𝝐𝒊

Error measures
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• CP2K: Converged B3LYP, 529 sec

• CP2K: PBE atomic guess, 2.17 sec

• ML mapping: 0.08 sec

• Diagonalization: 0.1 sec

• ML training: 12 sec

Electronic structure results

* Except for CP2K calculations all 

other calculations are done using 

a single processor

Model trained on 12.5% of the data
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• Excess energy relaxation dynamics 

• Time scales from dynamics in ML MOs are in within the 

error margin of the reference time scales

Shakiba, Akimov, J. Chem. Theory Compu., 2024, 8, 2992-3007

NA-MD with ML generated data
Model trained on 12.5% of the data

Model trained on 12.5% of the data



User interface for ML 
mapping in Libra
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Step 1: Data generation (distribute_jobs.py)
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# General variables

params['prefix']

params['trajectory_xyz_file']

params['user_steps']

params['njobs']

params['nprocs']

params['remove_raw_outputs']

params['submit_template']

params['software_load_instructions']

params['submit_exe’]

# Guess calculations

params['do_guess']

params['guess_dir']

params['guess_input_template']

params['guess_software']

params['guess_software_exe']

params['guess_mpi_exe']

# Reference calculations

params['do_ref']

params['reference_dir']

params['reference_input_template']

params['reference_software']

params['reference_software_exe']

params['reference_mpi_exe']

# Distribute the single-point calculations

distribute_jobs(params)



Step 2: Training the models (1_train.py):
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# General variables

params['prefix']

params[‘path_to_input_mats']

params[‘path_to_output_mats']

params[‘path_to_trajectory_xyz_file']

params[‘path_to_sample_files']

params[‘input_proprty']

params[‘output_proprty’]

# Models properties

params[‘kernel']

params[‘degree’]

params[‘alpha’]

params[‘gamma’]

params[‘scaler’]

params[‘partitioning_method’]

params[‘npartition’]

params[‘memory_efficient’]

params[‘train_parallel’]

# Saving models

params[‘save_models’]

params[‘path_to_save_models’]

params[‘save_ml_hams’]

params[‘save_ml_mos’]

params[‘save_ao_overlap’]

# Error analysis

params[‘do_error_analysis’]

params[‘save_ref_eigenvalues’]

params[‘save_ref_eigenvectors’]

params[‘path_to_save_ref_mos’]

params[‘compute_ml_total_energy’]

params[‘write_wfn_file’]

params[‘path_to_save_wfn_files’]

params[‘cp2k_ml_input_template’]

# Overlap and time-overlap 

calculations

params[‘compute_overlap']

params[‘nprocs']

params[‘is_periodic’]

params[‘A_cell_vector’]

params[‘B_cell_vector']

params[‘C_cell_vector’]

params[‘periodicity_type']

params[‘translational_vectors']

params[‘lowest_orbital']

params[‘highest_orbital']

params[‘res_dir']

# Distribute the single-point 

calculations

models, models_error, input_scalers, 

output_scalers = train(params)



Step 2: Use the model (2_distribute_jobs.py):
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# ==================== User inputs

# Load the parameters used to train the model

with open("train_params.json", "r") as f:

    params = json.load(f) 

# Number of jobs to distribute the energy calculations

params["njobs"] = 20

# Setup the steps to compute the properties for

params["steps"] = list(range(1000,3000))

# Submit template file

params["submit_template"] = "submit_template.slm"

# ==================== End of user inputs

# ==================== Distributing the jobs over multiple nodes

distribute_jobs(params)



Summary
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• A simple, efficient, and scalable ML approach for mapping non-self-consistent Kohn-Sham Hamiltonians 

constructed with one kind of density functional to the nearly self consistent Hamiltonians constructed 

with another kind of density functional. 

• Speeds up the calculations by several orders of magnitude

• Is conceptually simpler than alternative ML approaches

• Is applicable to different systems and sizes and can be used for mapping Hamiltonians constructed 

with arbitrary density functionals

• Requires a modest training data, learns fast, and generates molecular orbitals and their energies 

with the accuracy nearly matching that of conventional calculations

• When applied to nonadiabatic dynamics simulation of excitation energy relaxation in large systems 

yields the corresponding time scales within the margin of error of the conventional calculations
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Thank You!

Questions?
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