Nonadiabatic Molecular Dynamics with
Machine-Learned Kohn-Sham
Hamailtonian Mapping

Mohammad Shakiba
SUNY Buffalo

Akimov Research Group

-% University at Buffalo The State University of New York

Motivation

| want to present ChatGPT and its capability in a present: _))
. . Give me some simple prompts that ChatGPT cannot retrieve correct
provide me with 5 useful prompts that show the power ¢ .
))) L. . answers. | want to show the audience the cases where large language
programming nonadiabatic dynamics simulations. Just - .

models fail in reasoning.
prompts!

Here are some prompts that can illustrate the limitations and reasoning challenges faced by large

ssistant
Not a Replacement X

Machine-learning in electronic structure calculations

* Single or multiple target prediction: Band gaps, nonadiabatic couplings, dipole moment etc

* Machine-learning potentials and forcefields, one-electron reduced density matrix prediction

 DeePMD, SchNorb, Schpacknet, Mlatom, QMLearn, Pyseqm, etc

* Atomic coordinates Feature vector
and weights

* Potential and basis
set descriptors

* etc

Properties

Molecular
Band orbital

gap energies Density

Dipole Nonadiabatic Forces
moment couplings

)

Total
EXCitation energy

energies

max-pooling, and
dense layers

Machine-learning in electronic structure calculations

Give me an empty background image with blue color with RGB of
(0,0,255). | emphasize that the image should be empty and no object
should be in that. | want a uniform image of blue color with any

1. High price: High comj PUs use huge electricity!

variations.

2. Non-uniqueness: Hig cing the same physics while

there 1s a large differe
3. Overfitting problem:
4. Lack generality: Only

5. Input diversity and ca

requires fine tuning t

Here are the generated images with a uniform blue background (RGB 0, 0, 255). Let me know if you

need any further modifications!

6. Reproducibility: Weight initialization and Remove all the objects in those images

/-. The images | provided are already uniform, empty blue backgrounds with no objects. If you need any n Of the

7. Lack of physical interpretability of the “bl

additional adjustments or specific details verified, please let me know!

intermediate layers of the neural networks and feature vector, if we have we can design them better!

scriptors, addition of new input

Critical questions and insights

“Maybe we should start rethinking about the
way we are using machine-learning in

1 quantum chemistry and quantum dynamics,

neither overestimating nor underestimating

“We can repro the power of machine-learning models! ics with

machine-lear By being realistic!” tion) and

tained

models?”

What do we propose?

“With the current models, 1t is very hard to
surrogate quantum calculations with ML!
Instead, we can assist them with ML
techniques!”

“These mod

operatio

Target the SCF cycle with machine-learning

SCF WAVEFUNCTION OPTIMIZATION -| B3LYP

Step Time (sec) Convergence SCF .}S_tep: 1 I

- gy
1 Guess/Diag. 1.59674484 .
2 Broy./Diag. 2.77154376
3 Broy./Diag. 0.72899999 0.0
4 Broy./Diag. 0.12822688 _ _
...................................... ?%;. ! o1
...................................... T
...................................... Ty - —0.5
39 Broy./Diag. 0.00000115 -
40 Broy./Diag. 0.00000105
41 Broy./Diag. 0.00000057

What are the inputs?

KS orbitals y;

l

Nuclear pguess — z pAtomic Input: Jynon—SCF,PBE Output: HSCF.B3LYP
geometry :

KS orbital energies, ¢;

HB3LYP,SCF(R(t)) _ HB3LYP,SCF (HPBE’non_SCF(R(t)))
) = a

_ ZNtrain oK (1y PBEnon—SCF (R(ta))» 1y PBE.non—SCF (R (tﬁ)))
B=1

KX, Y)=XYT ¢=(K+ A T HBLYPSCE(R(¢,))

Shakiba, Akimov, J. Chem. Theory Compu., 2024, 8, 2992-3007

Atomic orbital matrices as direct “input features™:

Bypassing Neural Networks for feature extraction

* General: applicable to all systems
« Fast to compute: it’s already available in quantum chemistry packages
« Assigns a weight to the interaction of each atom with all other atoms

* More physically meaningful input features, even obtained at a low level of theory

Feature vector
H,p,S

Properties

> m) | =)

Is this efficient?

* Up to millions of elements for very large systems

* Pick the upper triangular part of the KS Hamiltonian matrix
due to symmetry

» Split them into multiple partitions

* Train a separate model for each partition - Each model can
be separately trained in parallel

* Rebuild the matrix and diagonalize it

OUtpUt: HSCF,BBLYP

In pu t: Hnon—S CF,PBE

=)

Different partitioning methods

Input KS output KS

Input KS output KS
Hamiltonian matrix Hamiltonian matrix

Hamiltonian matrix Hamiltonian matrix

L HHLL

Shakiba, Akimov, JCTC, 2024, 20, 8, 2992-3007 10

Models and the systems

« Kernel ridge regressor with a linear kernel
* (g fullerene with a GTO basis set size of 240
« Si1:Hg, with a GTO basis set size of 1039

« Step 1:
* Generate a precomputed nuclear trajectory with 2000 geometries with PBE functional
(similar to what is done in typical NA-MD simulations in nanoscale systems) . W > ’
« Step 2: |
« Kqual partitioning of the input and target Hamiltonian matrices Nao
» 30 partitions just for test! oo

* Step 3 Npo(Ngo + 1)
 Train the models for 50 (2.5%), 100 (5%), 250 (12.5%), 500 (25%), 750 (37.5%), 1000)

(50%) randomly selected geometries
o Step 4:

* Use the model to generate the Hamiltonian matrices and molecular orbitals 11

Error measures

* Mean absolute error of the following:
* 1- Total energy
* Feed back the ML molecular orbitals to the quantum
chemistry software
» 2- Molecular orbitals energies

* 3- Overlap of the ML and reference molecular orbitals

€ioverlap = 1.0 - |<¢i,ML|¢i,ref>|

Nyo

_ 1 2
G—NMO €;

i

12

Electronic structure results

102

101.
100.
L
<1074
=
10—2_
10—3.

1074

102.
101_
100.

Ll -1/
10731
107%

105

Model trained on 12.5% of the data

Eap - HSEOG/
r=——1
-\-\I\.\i_‘—_‘—.
|

Training set size

SizsHea - HSEOG

-@=- Total energy, Ha
-#— MO energies, meV
- £

102 103
Training set size

102

101.
100.
Ll
< 10714
=
10—2.
10—3.

1074

1014
100_

< 10——1_
10—2_
10—3_

104

Ceo - B3LYP

-\\h-

—@— Total energy, Ha
-@- MO energies, meV
-

102 103
Training set size

SizsHea - B3LYP

i

-—#— Total energy, Ha
- MO energies, meV
- £

102 103
Training set size

speed-up
B3LYP

the atomic basis set size PBE HSE06

240 X37 X225 X217
1039 X16 X724 X435

* Except for CP2K calculations all
other calculations are done using
a single processor 13

NA-MD with ML generated data

Model trained on 12.5% of the data

SizsHes - HSEO6

AL AT

Time, fs

o = o
e o 0

Excess energy, eV

o
o

o
o

o
[N)

Excess energy, eV
o
H

o
o

Excess energy relaxation dynamics
* Time scales from dynamics in ML MOs are in within the

error margin of the reference time scales

Ceo - HSEOG

- FSSH, Direct
+ FSSH, ML
- |D-A, Direct
+ ID-A, ML
= mSDM, Direct
- mSDM, ML

200 400 600 800 1000
Time, fs

SizsHea - HSEO6

- FSSH, Direct
+ FSSH, ML
- |D-A, Direct
+ ID-A, ML
= mSDM, Direct 4

+ mSDM, ML

......
........

................

200 400 600 800 1000
Time, fs

T, fs

T, 1S

Model trained on 12.5% of the data

Shakiba, Akimov, J. Chem. Theory Compu., 2024, 8, 2992-3007

Ceo - HSEOG

1034

102.

1034

—§— ML, FSSH

—§— ML, IDA
—§— ML, MSDM

102 103
Training set size

Si7sHea - HSEO6

—§— ML, FSSH
—§— ML, IDA
—§— ML, MSDM

102 103
Training set size

T, fs

T, fs

103

1024

1034

—§— ML, FSSH

—§— ML, IDA
—§— ML, MSDM

102 103
Training set size

SizsHea - B3LYP

—§— ML, FSSH
—§— ML, IDA
—§— ML, MSDM

102 103
Training set size

14

User interftace for ML
mapping in Libra

tﬁ University at Buffalo The state University of New York

Step 1: Data generation (distribute jobs.py)

General variables

params|['prefix']
params|['trajectory xyz file']
params['user steps']

params|['njobs']

params|['nprocs']
params['remove raw outputs']
params|['submit template']
params|['software load instructions']
params|['submit exe’]

Guess calculations
params|['do guess']

params['guess dir']

params['guess input template']
params['guess software']
params['guess software exe']
params['guess mpi exe']

Reference calculations
params|['do ref']

params|['reference dir']
params|['reference input template']
params|['reference software']
params['reference software exe']
params|['reference mpi exe']

Distribute the single-point calculations
distribute_jobs (params)

16

tﬁ University at Buffalo The state University of New York

Step 2: Training the models (1 train.py):

General variables

params|['prefix']

params|[‘path to input mats']
params|[‘path to output mats']

Saving models
params|[‘save models’]

params|[‘path to save models’]
params|[‘save ml hams’]

params|[‘path to trajectory xyz file']params|['save ml mos’]

params|[‘path to sample files']
params|[‘input proprty']
params|[‘output proprty’]

Models properties

params|[‘kernel’]

params|[‘degree’]

params|[‘alpha’]
params [‘gamma’]

params|[‘scaler’]

params|[‘partitioning method’]
params|[‘npartition’]

params|[‘memory efficient’]
params|[‘train parallel’]

params|[‘save ao overlap’]

Error analysis
params|[‘do error analysis’]
params|[‘save ref eigenvalues’]
params|[‘save ref eigenvectors’]
params|[‘path to save ref mos’]
params|[‘compute ml total energy’]
params|[‘write wfn file’]

params|[‘path to save wfn files’]
params|[‘cp2k ml input template’]
Overlap and time-overlap
calculations

params|[‘compute overlap']
params|[‘nprocs']
params|[‘'is periodic’]

params[‘A cell vector’]
params['B cell vector']
params['C cell vector’]

params|[‘periodicity type']
params|[‘translational vectors']
params[‘lowest orbital']
params[‘highest orbital']
params|[‘res dir']

Distribute the single-point
calculations

models, models error, input scalers,
output scalers = train(params)

17

tﬁ University at Buffalo The state University of New York

Step 2: Use the model (2 distribute jobs.py):

User inputs
Load the parameters used to train the model
with|open("%rain=params.json", "r"ﬂ as f:

params = json.load(f)
Number of jobs to distribute the energy calculations
params|[''njobs"] = 20
Setup the steps to compute the properties for
params['"steps"] = list(range(1000,3000))
Submit template file

params["submit template"] = "submit template.slm"
End of user inputs
Distributing the jobs over multiple nodes

distribute_ jobs (params)

18

tﬁ University at Buffalo The state University of New York

Summary

« A simple, efficient, and scalable ML approach for mapping non-self-consistent Kohn-Sham Hamiltonians

constructed with one kind of density functional to the nearly self consistent Hamiltonians constructed

with another kind of density functional.

Speeds up the calculations by several orders of magnitude

Is conceptually simpler than alternative ML approaches

Is applicable to different systems and sizes and can be used for mapping Hamiltonians constructed
with arbitrary density functionals

Requires a modest training data, learns fast, and generates molecular orbitals and their energies
with the accuracy nearly matching that of conventional calculations

When applied to nonadiabatic dynamics simulation of excitation energy relaxation in large systems

yields the corresponding time scales within the margin of error of the conventional calculations

19

Acknowledgement

Current and Past Team Members and Collaborators:

< Alexey V. Akimov (Chemistry UB) < Jochen Autschbach (Chemistry UB)
< Adam P. Philips (Chemistry UB)
< Daeho Han (Chemistry UB) % Sophya Garaschuk (Chemistry South
< Brendan Smith (Chemistry UB) Carolina)
< Wei Li (Hunan agriculture U) < Hamid Zabihi (Materials Eng. SBUK, Iran)
< Lili Rassouli (Chemical Eng. UB) < Kosar Yasin (Chemistry UB)
» Michel Dupuis (Chemical Eng. UB) < Layla Heidarizadeh (Chemistry UB)
% Qingxin Zhang (Chemistry UB) % Xuyan Ma (Chemical Eng. UB)
< Matthew Durta (Chemistry South Carolina) < Amber Jain (India)
< Elizabeth Stippell (Chemistry UCLA) % Xiang Sun (NYU at Shanghai)\

-a X

G5

CENTER FOR COMPUTATIONAL RESEARCH . . E
‘é University at Buffalo The State University of New York University at Buffalo

The State University of New York

20

Thank You!

Questions?

21

	Slide 1
	Slide 2: Motivation
	Slide 3: Machine-learning in electronic structure calculations
	Slide 4: Machine-learning in electronic structure calculations
	Slide 5: Critical questions and insights
	Slide 6: Target the SCF cycle with machine-learning
	Slide 7: What are the inputs?
	Slide 8: Atomic orbital matrices as direct “input features”: Bypassing Neural Networks for feature extraction
	Slide 9: Is this efficient?
	Slide 10: Different partitioning methods
	Slide 11: Models and the systems
	Slide 12: Error measures
	Slide 13: Electronic structure results
	Slide 14: NA-MD with ML generated data
	Slide 15: User interface for ML mapping in Libra
	Slide 16: Step 1: Data generation (distribute_jobs.py)
	Slide 17: Step 2: Training the models (1_train.py):
	Slide 18: Step 2: Use the model (2_distribute_jobs.py):
	Slide 19: Summary
	Slide 20: Acknowledgement
	Slide 21: Thank You! Questions?

