

## Global switching trajectory surface hopping molecular dynamics simulation on on-the-fly TDDFT potential energy surfaces

## Chaoyuan Zhu

## Institute of Molecular Science, National Yang Ming Chiao Tung University

Virtual International Seminar on Theoretical Advancements







## Outline

- Global switching algorithm
- Local switching via global switching
- TDDFT potential energy surfaces
- 1. dMe-OMe-NAIP photoisomerization (41 atoms)
- 2. Retinal chromophore isomer photoisomerization(63 atoms)
- Conclusions







# **Global switching algorithm**

a a





### **Mixed quantum-classical electronic coupled equations**

$$i\hbar \frac{\partial \Psi(\mathbf{r}, \mathbf{R}, t)}{\partial t} = (T_N + H_e(\mathbf{r}, \mathbf{R}))\Psi(\mathbf{r}, \mathbf{R}, t)$$
  
**R** is from classical trajectory  
Nuclear kinetic operator  $T_N = -\sum_{\alpha=1} \frac{\hbar^2}{2M_{\alpha}} \nabla^2_{\mathbf{R}_{\alpha}} = 0$   
Electronic basis expansion  $\Psi(\mathbf{r}, \mathbf{R}, t) = \sum_j c_j(\mathbf{R}, t) \Psi_j^{BO}(\mathbf{r}, \mathbf{R})$ 

**Electronic time-dependent Schrödinger equations** 

図 えま通た学 National Chiao Tung University

$$i\hbar \dot{c}_{k}(t) = \sum_{j} c_{j}(t) U_{kj}(\mathbf{R}) - i\hbar \dot{\mathbf{R}} \cdot \mathbf{d}_{kj}$$

$$P_{2 \to 1}(t) = \max\left(0, -\frac{\dot{\rho}_{22}(t)dt}{\rho_{22}(t)}\right)$$
Local switching (Tully fewest)



#### Mixed quantum-classical dynamics (Laudau-Zener model)

$$= 0 \qquad \left( \begin{bmatrix} V_{11}(\mathbf{R}) & V_{12}(\mathbf{R}) \\ V_{21}(\mathbf{R}) & V_{22}(\mathbf{R}) \end{bmatrix} \right) \begin{bmatrix} c_1(\mathbf{R}) \\ c_2(\mathbf{R}) \end{bmatrix} = i\hbar \frac{\partial}{\partial t} \begin{bmatrix} c_1(\mathbf{R}) \\ c_2(\mathbf{R}) \end{bmatrix}$$

#### Linear crossing model

 $I'_N$ 

国立主通大学

National Chiao Tung University

$$V_{11}(x) = -F_1 x \quad V_{22}(x) = -F_2 x \quad V_{12}(x) = V_{21}(x) = V_0$$

**Classical trajectory** 

$$x = vt$$

**Scattering matrix** 

$$\begin{pmatrix} c_1(\infty) \\ c_2(\infty) \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{pmatrix} \begin{pmatrix} c_1(-\infty) \\ c_2(-\infty) \end{pmatrix}$$





$$S^{R}(dia) = \begin{pmatrix} \sqrt{p} & -\sqrt{1-p}e^{i\Phi} \\ \sqrt{1-p}e^{-i\Phi} & \sqrt{p} \end{pmatrix}$$

$$p = e^{-2\delta}$$

$$\delta = \frac{\pi}{8\sqrt{a^2b^2}}$$

### This is an exact solution under $T_N = 0$

Adiabatic switching probability





#### Nonadiabatic switching probability expressed in terms of

#### **Two unitless parameters**

$$a^{2} = \frac{\hbar^{2}}{2\mu} \frac{\sqrt{|F_{1}F_{2}|} (|F_{2} - F_{1}|)}{8V_{0}^{3}} \longrightarrow \text{Effective coupling}$$
$$b^{2} = (E_{//} - E_{0}) \frac{(|F_{2} - F_{1}|)}{2\sqrt{|F_{1}F_{2}|}V_{0}} \longrightarrow \text{Effective collision energy}$$

#### M. S. Child, Molecular Collision Theory (Academic, London, New York, 1974)







#### Semiclassical solution in time-independent framework

#### **Coupled Schrödinger equation**

$$T_{N} \neq \mathbf{0} \left( -\frac{\hbar^{2}}{2\mu} \frac{d^{2}}{dR^{2}} + \begin{bmatrix} V_{11}(R) & V_{12}(R) \\ V_{12}(R) & V_{22}(R) \end{bmatrix} \begin{bmatrix} c_{1}(R) \\ c_{2}(R) \end{bmatrix} = E \begin{bmatrix} c_{1}(R) \\ c_{2}(R) \end{bmatrix}$$

$$p = \exp\left[-\frac{\pi}{4a}\left(\frac{2}{b^2 + \sqrt{b^4 \pm 1}}\right)^{1/2}\right] \xrightarrow{b^2 \gg 1} p = \exp\left[-\frac{\pi}{4ab}\right]$$

Zhu-Nakamura (work at Ex) Landau-Zener (not work at Ex)

C. Zhu and H. Nakamura, J. Chem. Phys. 101, 10630 (1994); 102, 7448(1995)





Directly extending to multi-dimensional for N atoms

$$2 \rightarrow N$$
 10



Multi-dimensional forces along a trajectory at avoided crossing

Linear connection for each i-component

国立言通大学

National Chiao Tung University

 $R \rightarrow \mathbf{q}$  $\mathbf{q} \equiv (\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_N)$ 



$$F_{1}^{i\alpha}(\mathbf{q}) = \frac{1}{q_{i\alpha}^{3} - q_{i\alpha}^{1}} \left[ \frac{\partial U_{-}}{\partial q_{i\alpha}^{3}} (q_{i\alpha} - q_{i\alpha}^{1}) - \frac{\partial U_{+}}{\partial q_{i\alpha}^{1}} (q_{i\alpha} - q_{i\alpha}^{3}) \right]$$

$$F_{2}^{i\alpha}(\mathbf{q}) = \frac{1}{q_{i\alpha}^{3} - q_{i\alpha}^{1}} \left[ \frac{\partial U_{+}}{\partial q_{i\alpha}^{3}} (q_{i\alpha} - q_{i\alpha}^{1}) - \frac{\partial U_{-}}{\partial q_{i\alpha}^{1}} (q_{i\alpha} - q_{i\alpha}^{3}) \right]$$

Linear diabatization along a trajectory at avoided crossing





#### Between different spin states

Linear connection for each i-component

$$\mathbf{q} \equiv (\mathbf{q}_{1}, \mathbf{q}_{2}, \cdots, \mathbf{q}_{N})$$

$$F_{1}^{i\alpha}(\mathbf{q}) = \frac{\partial E_{1}(\mathbf{q}^{2})}{\partial q_{i\alpha}^{2}}$$

$$F_{2}^{i\alpha}(\mathbf{q}) = \frac{\partial E_{2}(\mathbf{q}^{2})}{\partial q_{i\alpha}^{2}}$$

$$\frac{\partial E_{2}(\mathbf{q}^{2})}{\partial q_{i\alpha}^{2}}$$

#### Directly given for different spin states







## **Define hopping direction**

$$s_{i\alpha} = \left[F_2^{i\alpha}\left(\mathbf{q}^2\right) - F_1^{i\alpha}\left(\mathbf{q}^2\right)\right] \frac{1}{\sqrt{m_i}}$$



Provide the maximum switching probability at avoided crossing









### **Global nonadiabatic switching algorithm**

#### **Only need**

Potential energy surfaces

**Gradient of potential energy surfaces** 

 $U_{+}(\mathbf{R}) = U_{+}(q_{1}, q_{2}, \cdots, q_{3N})$  $U_{-}(\mathbf{R}) = U_{-}(q_{1}, q_{2}, \cdots, q_{3N})$ 



## **Run nonadiabatic molecular dynamics simulation**

## **Searching conical intersections**

L. Yu, C. Xu, Y. Lei, C. Zhu, and Z. Wen, PCCP 16, 25883 (2014)





# Local switching via global switching







## Azobenzene photoisomerization



#### **Cis-to-trans and trans-to-cis**





## **Exactly same initial conditions and the same Potential energy surfaces: OM2/MR-CISD(10,10)**

#### **Sampling trajectories:**

Starting from cis-azobenzene(800) Starting from trans-azobenzene(600), Time step for trajectory propagation is 0.1fs.

|              | Quantum yield       | lifetimes     |
|--------------|---------------------|---------------|
|              | <b>Global: 0.57</b> | Global: 72fs  |
| CIS-to-trans | Local : 0.58        | Local: 82fs   |
| Trans-to-cis | Global: 0.16        | Global: 280fs |
|              | Local : 0.20        | Local: 310fs  |



#### Hopping spot distributions in terms of CNNC dihedral angle



國立主通大學

National Chiao Tung University



#### cis-to-trans 150 120 90 60 NNCC (deg) 30 -0 --30 -60 -<del>9</del>0 -120 В -150 -150 -120 -90 -60 30 120 150 -30 0 60 90 CNNC (deg)



#### Global



## Average population distributions as function of time







## Local switching (Tully fewest) Global switching)

$$P_{2 \to 1}(t) = \max\left(0, -\frac{\dot{\rho}_{22}(t)dt}{\rho_{22}(t)}\right) \qquad p_{ZN} = \exp\left[-\frac{\pi}{4a}\left(\frac{2}{b^2 + \sqrt{b^4 \pm 1}}\right)^{1/2}\right]$$

## Equally good

L. Yue, L. Yu, C. Xu, Y. Lei, Y. Liu, C. Zhu, ChemPhysChem 18,1274 (2017)





# **TDDFT potential energy surfaces**







## Azobenzene photoisomerization

 $n \rightarrow \pi^*$  excitation



**Cis-to-trans and trans-to-cis** 



## **Comparison among SF-TDDFT, TDDFT, CASSCF**

國立立通大學

National Chiao Tung University

| Method                | N <sub>traj</sub> | cis- to-trans<br>QY Lifetime(fs) |          | trans-to-cis      |                   |
|-----------------------|-------------------|----------------------------------|----------|-------------------|-------------------|
| Wiethod               | (cis/trans)       |                                  |          | QY                | Lifetime(ps)      |
| SF-TDDFT <sup>*</sup> | 300/226           | $0.43 \pm 0.07$                  | 63.1±1.1 | $0.11 \sim 0.16$  | $2.218 \pm 0.010$ |
| LR-TDDFT              | 259/268           | 0.34±0.09                        | 62.0±0.9 | $0.13 \pm 0.16$   | $1.039 \pm 0.009$ |
| SA2-<br>CASSCF(6,6)   | 800/600           | 0.39±0.04                        | 53.1±3.0 | $0.33 {\pm} 0.05$ | $0.81 \pm 0.10$   |
|                       |                   |                                  |          |                   |                   |

## **Quantum yield and lifetime all from global switching**

L. Yue, Y. Liu and C. Zhu, PCCP 20, 24123 (2018)





25

#### Hopping spot distributions in terms of CNNC dihedral angle

#### SF-TDDFT

#### **LR-TDDFT**









27

## Hopping spot distribution in terms of energy gap



SF-TDDFT TDDFT





#### **Functional and basis set dependence of TDDFT**

## **TDDFT (Gaussian 16) Dynamics (Our own code)**

| QY(lifetime) | B3lyp       | BHandHLYP  | CAM-B3LYP  |
|--------------|-------------|------------|------------|
| 3-21g        | 0.51 (35.3) | 0.21(36.4) | 0.10(36.8) |
| 6-31g        | 0.57 (37.3) | 0.40(36.8) | 0.40(37.3) |
| 6-31g(d)     | 0.63 (47)   | 0.59(34.6) | 0.49(34.4) |
| cc-pvdz      | 0.60(37.2)  | 0.52(34.4) | 0.42(33.9) |

| Average   | quantum yield      | lifetime      |
|-----------|--------------------|---------------|
| B3LYP     | <b>0.6</b> (±5%)   | 40.5fs (±10%) |
| BHandHLY  | 0.5 (±10%)         | 35.5fs (±4%)  |
| CAM-B3LYP | <b>0.44 (±9%</b> ) | 35.2fs (±10%) |

#### **Cis-to-trans**

L. Ye, C. Xu, F. L. Gu and C. Zhu, J. Comput. Chem. 41,635 (2020)<sub>28</sub>



#### The hopping spot distributions for energy gap

The same 6-31g(d)

國立主通大學

National Chiao Tung University

The same **B3LYP** 



L. Ye, C. Xu, F. L. Gu and C. Zhu, J. Comput. Chem. 41,635 (2020)<sub>29</sub>





## **1.dMe-OMe-NAIP** photoisomerization









Photoisomerization of dMe-OMe-NAIP (41 atoms)

- Too big for applying CSSCF method
- Not work with semiempirical method
- The first time with TDDFT

## **Unique choice for TDDFT method**

All hopping points are well behaviors,

No problem at all for CI between S0 and S1 TD-B3LYP/6-31G\*





#### **Potential energy surface profiles**







#### **Simulation results**

| Quantum yield Lifetime (fs)<br>0.23 Theory 620<br>0.25 Exp ~480<br>0.26 Eve ~480 | From E-isomer               |      |     |      |  |
|----------------------------------------------------------------------------------|-----------------------------|------|-----|------|--|
| 0.23 Theory 620<br>0.25 Exp ~480<br>0.26 Exp ~480                                | Quantum yield Lifetime (fs) |      |     |      |  |
| 0.25 Exp ~480                                                                    | 0.23                        | Theo | ory | 620  |  |
| 0.26 E                                                                           | 0.25                        | Exp  |     | ~480 |  |
| 0.20 Exp ~400                                                                    | 0.26                        | Exp  |     | ~480 |  |

| From Z-isomer |            |           |  |  |
|---------------|------------|-----------|--|--|
| Quantum       | yield Life | time (fs) |  |  |
| 0.15          | Theory     | 600       |  |  |
| 0.24          | Exp        | 430       |  |  |

Y. Hu, C. Xu, L. Ye, F. Gu and C. Zhu, Phys. Chem. Chem. Phys., 23, 5236 (2021)33





#### **Photoisomerization mechanism from conical intersection**







#### The number of hopping trajectories via CIs as function of time







#### Hopping spot distributions in terms of CCCC and CCCN



No problem at all hopping points between S0 and S1





## **2.Retinal chromophore isomer photoisomerization**







**Photoisomerization of retinal chromophore isomer (63atoms** 

## Unique choice for TDDFT method

All hopping points are well behaviors,

No problem at all for CI between S0 and S1 again

## **TD-CAM-B3LYP/6-31G**







#### **Trajectory starts at anywhere on potential energy surface**







#### **Potential energy surface profiles (7 conical intersections)**







#### **Geometry structures of conical intersections**





#### Hopping points connect to reactants and products

国立な通大学

National Chiao Tung University



42



43

#### Hopping spot distributions in terms of dihedral angles

國立主通大學

National Chiao Tung University







#### Simulation results

| Droduot - | From all-trans (140) |                          | From 11-cis (130) |                                             |
|-----------|----------------------|--------------------------|-------------------|---------------------------------------------|
| Ploduct - | $N_{ m traj}$        | QY                       | $N_{ m traj}$     | QY                                          |
| All-trans | 58                   | 0.41                     | 11                | 0.08(0.2 <sup>b</sup> , 0.65 <sup>c</sup> ) |
| 11-cis    | 15                   | 0.11(0.09 <sup>a</sup> ) | 46                | 0.35                                        |
| 8-cis     | 6                    | 0.04                     |                   |                                             |
| 9-cis     | 19                   | $0.14(0.02)^{a}$         |                   |                                             |
| 9_11-cis  | 18                   | 0.13                     | 13                | 0.1                                         |
| 11_14-cis |                      |                          | 10                | 0.08                                        |

<sup>a</sup>Ref. 2 and <sup>b</sup>Ref. 11 in methanol solution, and <sup>c</sup>Ref. 8 in Rhodopsin protein.

Y. Liu and C. Zhu, Phys. Chem. Chem. Phys., 23, 23861 (2021)

44



### **TD-DFT searching intersection between S0 and S1**



**Cannot avoid CI (singular point)** 



Trajectory gets less chance to CI

**1. As dimension increases for large system, so that TD-DFT gets better and better** 

As far as trajectory runs not right at CI, TD-DFT OK
 Energy gap where TD-DFT breaks (system dependent)





## Conclusions

### **Global switching TSH methodfor nonadiabatic simulation**

No need for calculating nonadiabatic coupling vector No need for calculating seam surfaces Only need calculating potential energy surfaces and its gradients

## **Global switching TSH can also use to search conical intersections**

Very good to treat CI  $(S_1/S_0)$  with TDDFT method

For large and complicated systems



### ACKNOWLEDGEMENTS

### **Postdocs and students:**

National Chiao Tung University

国立立通大学

Dr. Ling Yue (Xian Jiao Tung university, China) Dr. Yuxiu Liu (Xiamen University, China) Dr. Ying Hu (South China Normal University, China) Mr. Linfeng Ye (Shandong University, China)

## Professor

Dr. Fenglong Gu (South China Normal University, China)

## **Funding from Taiwan:**









国をま通た学 National Chiao Tung University





edited by Chaoyuan Zhu

#### Time-Dependent Density Functional Theory Nonadiabatic Molecular Dynamics

**111** 

Chaoyuan Zhu

Semiclassical Nonadiabatic Molecular Dynamics

Theory and Simulation with and without Classical Trajectories

