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Electron dynamics

d
dt
|φ〉=−iĤ|φ〉 or

d ρ̂

dt
=−i[Ĥ, ρ̂]

Real time simulations of:

Transport
Photochemistry

Spectra
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Electron density oscillations

A perturbation leaves the charge density oscillating indefinitely
in time, which is unphysical.

d ρ̂

dt =−i[Ĥ, ρ̂] produces non-dissipative dynamics

Photons are missing
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Radiative dissipation

Radiative dissipation → nanoseconds

Non-radiative dissipation
Typical electron dynamics simulations

}
→ picoseconds

Should we care about electromagnetic energy dissipation in
atomistic simulations?

Well, in some cases, for example:

Zero (nuclear) temperature dynamics
Power from light-emitting systems
Collective optical phenomena
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Radiative dissipation in the classical picture

Let’s assume that the charge density irradiates as a classical
oscillating dipole emitting from an antenna.

Under a few approximations, the power radiated by a moving
dipole can be solved, to give the Larmor equation:

Prad
∼=

µ0

6πc
[µ̈(t)]2
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Semiclassical approach: Lagrangian formulation

The time dependent Schrödinger equation for a set of single-particle
wave-functions |φi〉 is derivable from a Lagragian,

L = T (q̇1, q̇2, · · ·)−V (q1,q2, · · ·)

T : kinetic E ; V : potential E ; q: generalized coordinates

If:
T = ∑

j
〈φj |i

∂

∂ t
|φj〉 ; V = Eelectrons ; qi = |φi〉

Then:

d
dt

(
∂L

∂ |φ̇j〉

)
− ∂L

∂ |φj〉
= 0⇒ d

dt
|φj〉=−i ĥj |φj〉 T.D.S.E.
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Lagrangian approach to the Schrödinger equation

In principle it must be possible to augment the Lagrangian with
the radiative energy to get a dissipative EOM:

L = ∑
j
〈φj |i

∂

∂ t
|φj〉+ Ee + Lrad
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Dissipative Lagrangian

An alternative pathway: Rayleigh dissipation function F

Lord Rayleigh (1870s’). Used in classical mechanics to
introduce non-conservative forces, typically the friction:

d
dt

(
∂L
∂ q̇i

)
− ∂L

∂qi
+

∂F
∂ q̇i

= 0

F is half the energy dissipated per unit time.

In the present case:

F =
1
2

Prad
∼=

1
2

µ0

6πc
[µ̈(t)]2

∂F
∂ |φ̇n〉

=
1
2

∂Prad

∂ |φ̇n〉
=

µ0

6πc

(
∂ 2〈µ〉

∂ t2

)
∂ 〈µ̈〉
∂ |φ̇n〉
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Dissipative equation of motion

After some elaboration this leads to:

∂ ρ̂

∂ t
=− i

h̄
[Ĥ, ρ̂]− µ0

6πch̄
µ̈[[µ̂, Ĥ], ρ̂]

Tight-binding simulation
in a two-level system:
dissipative dynamics
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Proof of concept

Power

P =− d
dt
〈ĤS〉

Classical fingerprint
of photon emission

Bustamante, Gadea, Horsfield,
Todorov, Gonzalez-Lebrero, Scherlis
Phys. Rev. Lett. 2021 126, 087401
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〈ĤS〉

Classical fingerprint
of photon emission

Bustamante, Gadea, Horsfield,
Todorov, Gonzalez-Lebrero, Scherlis
Phys. Rev. Lett. 2021 126, 087401

VISTA Seminar Light emission in real-time molecular simulations



Performance

For TB systems simulations predict:
decay rates
oscillator strengths
width and shape of peaks consistently with natural
broadening

TDDFT implementation
Excitation lifetimes for the 2s2p state in atomic species

C2+ B+ Be
Experimental (ns) 0.57 ± 0.02 0.86 ± 0.07 1.77 - 2.5

TDDFT (ns) 0.565 0.831 1.97

Bustamante, Gadea, Horsfield, Todorov, Gonzalez-Lebrero, Scherlis, Phys. Rev. Lett. 2021 126, 087401
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Application: cooperative emission in molecules

Superradiance
Coherent radiative relaxation of a set of identical emitters
mutually coupled through their electromagnetic fields,
producing a burst in the radiated power together with an ac-
celeration of the emission rate.

Power ∝ N2(N1 + 1)

Lifetime ∝
1
N

Interesting for lasers and high-speed emitting devices
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Application: cooperative emission in molecules

Subradiance
Antiphase coupling of the radiating dipoles that yields a
destructive interference and switches off energy dissipation,
allowing the system to survive indefinitely in an electronically
excited state without emitting→ “Dark States”

Emission Probability = Nexc
N

Optical energy storage
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Superradiance in a molecular array of H2

Simultaneous
excitation of all

monomers

The decay rate
is linear with N

Bustamante, Gadea, Todorov, Scherlis, J. Phys. Chem. Lett. 2022 13, 11601
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Subradiance in a molecular array of H2

Selective excitation of one, two, three or four molecules
Pe = ∆E = Nexc

N
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Semiclassical dynamics lacks spontaneous emission

Pure eigenstates remain stationary.

∂ ρ̂

∂ t
=− i

h̄
[Ĥ, ρ̂]−Aµ̈[[µ̂, Ĥ], ρ̂]

Larmor’s fault.

To go beyond the SC model we consider a QED treatment
where the electrons are coupled to a photon bath:

Ĥ = Ĥe + ĤB + ĤI

ĤB = ∑
k

2

∑
λ=1

h̄ωk

(
â†

k,λ âk,λ +
1
2

)
ĤI =

e
m ∑

k
Âk · p̂
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QED approach based on a photon bath

In 1 D, applying the dipolar approximation and tracing over the
photonic degrees of freedom:

ih̄
d
dt

ρ̂ =
[
ĤS, ρ̂

]
+

e
m

([
p̂,
[
χ̂

A, ρ̂
]]

+
[
p̂,
{

χ̂
B, ρ̂

}]
+
[
p̂,4ρ̂ Tr

(
ρ̂ χ̂

B
)]
−
[
p̂,2ρ̂ χ̂

B
ρ̂

])
where

χ
A
nn′ =− iepnn′ |ωnn′ |

12πε0mc3 (2N (|ωnn′ |,T ) + 1)

χ
B
nn′ =

iepnn′ωnn′

12πε0mc3 .

Tarasi, Todorov, Bustamante, Gadea, Todorov, Stella, Apostolova, Scherlis, submitted.
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QED approach

ih̄
d
dt

ρ̂ =
[
ĤS , ρ̂

]
+

e
m

([
p̂,
[
χ̂

A, ρ̂
]]

+
[
p̂,
{

χ̂
B , ρ̂

}]
+
[
p̂,4ρ̂ Tr

(
ρ̂ χ̂

B
)]
−
[
p̂,2ρ̂ χ̂

B
ρ̂

])

It can be shown that:
Tr
(
ρ̂ χ̂B) ∝ 〈µ̈〉

e
m

[
p̂,4ρ̂ Tr

(
ρ̂ χ̂B)]= µ0

6πih̄c 〈µ̈〉
[[

µ̂, ĤS

]
, ρ̂
]

= Λ̂SC

Then:

SC Approach:

ih̄
d
dt

ρ̂ =
[
ĤS, ρ̂

]
+ Λ̂SC

QED Approach:

ih̄
d
dt

ρ̂ =
[
ĤS, ρ̂

]
+ Λ̂SC + Λ̂QED
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ĤS , ρ̂

]
+

e
m

([
p̂,
[
χ̂

A, ρ̂
]]

+
[
p̂,
{

χ̂
B , ρ̂

}]
+
[
p̂,4ρ̂ Tr

(
ρ̂ χ̂

B
)]
−
[
p̂,2ρ̂ χ̂

B
ρ̂

])
It can be shown that:

Tr
(
ρ̂ χ̂B) ∝ 〈µ̈〉

e
m

[
p̂,4ρ̂ Tr

(
ρ̂ χ̂B)]= µ0

6πih̄c 〈µ̈〉
[[

µ̂, ĤS
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Model system

Su–Schrieffer–Heeger (SSH) model for polyacetylene
(First neighbors TB)
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Interplay between classical and quantum dissipation

ρexc(t = 0) = 0.01 ρexc(t = 0) = 0.1 ρexc(t = 0) = 0.99

For a system of two bands it is possible to show:

PSC → ρ
2
12 PQED→ ρ22
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Interplay between classical and quantum dissipation

Excitation with a laser pulse resonant with k = π

2a

ΛSC introduces stepwise relaxation through the subradiant
coupling of different k-points
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Interplay between classical and quantum dissipation

Effect of the number of k -points N (or number of cells)
on the subradiant period T

Subradiant coupling
between emitters of
similar energies around
k = π/2a, interfering
destructively

Under a few assumptions
it can be shown that:

T =
N ·a[

dω21
dk

]
k=k0
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Electroluminescence of atomic chains

Model system

SOURCE DRAIN

ih̄
d
dt

ρ̂ =
[
ĤS , ρ̂

]
− ih̄Γ(ρ̂− ρ̂

−) ih̄
d
dt

ρ̂ =
[
ĤS , ρ̂

]
− ih̄Γ(ρ̂− ρ̂

+)
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Electroluminescence of atomic chains

Metallic wires

Emitted power ∝

{ L
V 2

Bustamante, Todorov, Gadea, Tarasi, Stella, Horsfield, Scherlis, J. Chem. Phys. 2024 160, 214102
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Electroluminescence of atomic chains

Semiconducting polymers

P and I ↓ with L
P and I ↑ with V

}
⇒Q.E. =

photons emitted
electrons injected

? with L and V
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Electroluminescence of atomic chains

Quantum efficiencies of semiconducting polymers
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Some conclusions

Weakly excited systems: semiclassical contribution
predominates, with the emission power controlled by the
coherences.

Strong excitations or excited eigenstates: semiclassical
contribution becomes negligible, a fully quantum treatment
is required. Power controlled by the populations.

Periodic polymers: coupling between emitters with a
continuum energy spectrum in k-space is a route to
achieve subradiance in semiconductors. Interplay between
band diagram topology and laser frequency.
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