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ABSTRACT

In David Bohm's causal/trajectory interpretation of quantum mechanics, a physical system is regarded as
consisting of both a particle and 2 wavefunction, where the latter “pilots” the trajectory evolution of the
former. In this paper, we show that it is possible to discard the pilot wave concept altogether, thus devel-
oping a compiete mathematical farmulation of time-dependent quantum mechanics directly in terms of
real-valued trajectories alone. Moreover, by introducing 2 kinematic definition of the guantum potential,

damental than Eq. (11), Basically, this implics that no quantum cf-
fects can be attributed to the behavior of a single trajectory alone.
Rather, all quantum behavior in nature is due to an interaction
amongst the different trajectories within a given ensemble, with

We conclude with a briel discussion of some of the potential
interpretive ramifications of the new formulation. In Bohmian
mechanics, there is only one system trajectory, whereas the
present approach offers an entire ensemble of trajectones. If
one presumes objective existence for 3 single trajectory only,
then the remaining trajectories in the ensemble must be re-
garded as “virtual" in some sense, On the other hand, one might
prefer to regard all trajectories in the guantum ensemble as
equally valid and real, It is hard to imagine how this could be
achieved, without posldng that each trajectory inhabits a sepa-
rate worlg = = ized, however, that this version
puld be very different from
. in a nutshell, the latter associates
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PHYSICAL REVIEW X 4, 040002 (2014)

Editorial: Does Research on Foundations of Quantum Mechanics Fit into PRX’s Scope?

And we have invited a Commentary by Bill Poirier from Texas Tech University that we hope
will enhance your understanding of the paper and of our decision to publish it

The Editors

The Many Interacting Worlds Approach to Quantum Mechanics
Bill Poirier , Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University,
Box 41061, Lubbock, Texas 794009-1061

A Commentary on:

Quantum Phenomena Modeled by Interactions between Many Classical Worlds
Michael J. W. Hall, Dirk-André Deckert, and Howard M. Wiseman

Phys. Rev. X, 4, 041013 (2014)

About the Commentary author:

Bill Poirier is Chancellor’s Council Distinguished Research Professor and also Bamnie E. Rushing
Jr. Distinguished Faculty Member at Texas Tech University, in the Department of Chemistry and
Biochemistry and also the Department of Physics. He received his Ph.D. in theoretical physics
from the University of California, Berkeley, followed by a chemistry rescarch associateship at the
University of Chicago. His rescarch interest 1s in understanding and solving the Schridinger
cquation, from both foundational and practical perspectives.




INTERNATIONAL BUSINESS TIMES
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_W N g NG :
Parallel and interacting worlds could explain weirdness of quantum mechanics, says a new theory. But
these are parallel worlds at atomic scale, not the kind we saw in Interstellar.(Warner Bros)

Quantum mechanics, that explains the world of atoms and quarks, confers certain weirdness on the
world by referring to objects in terms of the wave function. This only gives a probability of finding an
object at a certain position and time.

Hence, the world is not well-defined.

Texas Tech University chemical physicist Bill Poirier's theory does away with the wave and gives a
classical world status to quantum reality.



Brief Outline for Remainder of Talk

Brief description of what this approach is.

A e B

First principles derivation: 1D time-independent case
Noether’s theorem / symplectic structure / numerics
Time dependent case / multi-dimensional case
Relativistic generalization




Getting Rid of ¥ Altogether:
How can that even be possible?
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Is ¥ Alive or Dead ? -



But 1f not ¥, then what?
Answer: Trajectories only

* The wavetunction ¥ (x,?) i1s replaced with an ensemble
(family) of trajectories, x(C,?).
— parameter C labels individual trajectories within the ensemble.
— resembles classical statistical mechanics/trajectory simulations.

* The individual trajectories turn out to be the quantum
trajectories of David Bohm. However ...

o This is NOT Bohmian Mechanics!

— Bohm uses a single trajectory, x(¢).
— Bohm also uses the wavefunction, ¥(x,).



Copenhagen quantum Bohmian mechanics

mechanics

Y represents the state of ¥ and x(¢) together

the system. TDSE
drives evolution of

Y(x,0).

—

Quantum trajectory-based
formulation (non-relativistic)

There 1s no Y. x(z, C) (trajectory
ensemble) alone represents the
state of the system, and leads to Q.
x(¢, C) satisfies its own PDE that
replaces the TDSE (with " denoting
partial derivative w/ respect to C.)

av(x) h2 X" X" x" x//3
+ — 38 + 10 =0

represent the state of
the system. ¥ leads to
quantum potential Q,
driving trajectory
dynamics via:

- IV (x) N 20(x,t) _0 -
0x 0x ox 4m

x/4 .X,S x/6

\\I[1/7
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Copenhagen quantum Bohmian mechanics
mechanics

Y represents the state of ¥ and x(¢) together
the system. TDSE represent the state of
drives evolution of the system. ¥ leads to
Y(x,?). quantum potential Q,
driving trajectory
dynamics via:

mx+8gSD+8%$J):0

Key Mathematical Features:

Quantum trajectory-based
formulation (non-relativistic)

There 1s no Y. x(z, C) (trajectory
ensemble) alone represents the
state of the system, and leads to Q.
x(¢, C) satisfies its own PDE that
replaces the TDSE (with " denoting
partial derivative w/ respect to C.)

av(x) h2 X" X" x" x//3
+ + — 38 + 10 =0

mx ox 4m 4 5 /6

x’ X X

I.  xwas an independent variable, but 1s now the
dependent field quantity.

2. PDE 4% order in “space” (C), 2" order in time (7).
C and ¢ not treated on equal footing; are x and t ?

3. “Spatial” derivatives = interworld interaction =
quantum “weirdness.”

4.  Trajectory PDE shows no explicit dependence on C
and t (and x if V' = const) unlike in Bohm.

5. Ensemble of quantum trajectories foliate spacetime
(no crossing trajectories).




Brief Outline for Remainder of Talk

Brief description of what this approach is.

First principles derivation: 1D time-independent case

MBI I e

Noether’s theorem / symplectic structure / numerics
Time dependent case / multi-dimensional case
Relativistic generalization




Theoretical/Mathematical Ramifications
First Principles Derivation

 Start “from scratch’; assume almost no knowledge of:
— classical mechanics (Newton’s Laws)
— quantum mechanics (TISE).

e “Trial” trajectory x(¢) completely unconstrained
— 1.e. x(?) 1s a path, not yet a trajectory.

» Posit existence of two “functional forms™ of x(z).
— f[x] (depends on x; essentially potential energy)
— g[x] (depends on x; essentially kinetic energy)

— NO assumptions are made about form of f [x] and g[x]!
— Space x assumed to be homogeneous (for simplicity).



Physical Constraint #1:

Action Extremization

For all possible smooth paths x(¢) that connect:
— 1nitial point (xo,t,) with final point (x)

— dynamical solution trajectory = x(#) path that extremizes action, S.
Ly

S = [ LLx(0), %()de = [ (elx]- /Tx])dt

Iy

Definition of action:

Solution x(¢) satisfies Euler-Lagrange equation:

2521
Ox | dt| ox

Note: f[x] and g[x] are still completely unspecified!
— e.g., g[x]=Cx" would be permissible.
— however, for any specific choice of fand g, the solutionx(?)

1s now completely determined. -




Physical Constraint #2:
Hamiltonian Energy Conservation

For all possible smooth paths x(#) with initial conditions: y

X(to):xO and _X(to) = X-O h
dynamical solution trajectory = x(#) path that conserves Hamiltonian, H.

Form of Hamiltonian:
H[x(t),x(t)] = glx(0)]+ f1x(#)]

Solution x(¢#) satisfies Hamiltonian energy conservation:
H[x(t),x(¢t)]= H(t) = constant

Note: f[x] and g[x] are still completely unspecified!
— however, for any specific choice of fand g, the solution x(?)

1s now completely determined. -



Combining Both Constraints

» Either physical constraint by itself leads to a unique set of:
solution trajectories
— In general, 1.e. for arbitrary choice of f[x] and g[x],
Action extremizing trajectories are not the same as Hamiltonian
conserving trajectories
 Satistying both conditions simultaneously 1s very special:

— Noether’s theorem: explicit ¢ invariance of L implies existence
of a conserved energy quantity, denoted E.

— QOur condition: that Noether E be equal to the Hamiltonian /.
— 1mposes severe restrictions on allowed forms for f [x] and g[x].



Combining Both Constraints

» What are the most general possible forms consistent with
both action extremization and Hamiltonian conservation?

f [x] = completely unconstrained = V[x]
g[X]= Ax* =(m/2)x* = T[%]
* These are precisely the most general possible forms that

are considered 1n classical mechanics.

— thus, classical mechanics satisfies both of the two physical
constraints, that we have imposed (already known).

— but no other choices for f[x] and g[x] (i.e., no other candidate

dynamical laws) can do so.



Harmonic Potential Trajectories

x(2)

extremal action &
-y Hamiltonian conserving

fx]=VIx] = (1/2) x?

gl x]

Hamiltonian conserving

extremal action

1/2)x° (black curves)

glx.

1/2)%* +.1x* (red and blue curves)



Quantum Trajectories Derivation
1D Stationary Scattering States

* Requires modification of the L[x, x] and H[x, x]forms.
* Requires higher-order time derivatives.

— consider contact/point transformation from coordinate x to y.
— transformed functionals now mix y and y, however...

— no new physics added, 1.e. result still classical mechanics.

* Posit existence of higher-order functional forms:
L=L[xx,Xx,...]
H=H[x,x,X,...]



Quantum Contribution to
L and H Functional Forms

Space x assumed to be homogeneous (for simplicity).

Posit existence of higher-order quantum correction, Q:
L[x,x,%,...]=T[x]-V[x]-0[x, X,...]
H[x,x,%,...] = T[x]+ V[x]+ Q[x,%,...]

QO resembles a potential energy:
— connects to “quantum potential” of Bohm theory.
— adds to H but subtracts from L, like a potential energy.

QO resembles a kinetic energy:
— kinematic quantity that cannot depend on x.
— quantum “potential” actually comes from K.E. operator.



Functional Form of Q

* Technical Note:
— action extremization via “generalized” Euler-Lagrange eqn:

[8L} d[@L} d’ [aL}
— |- | — |4 — — _...:()
ox | dt| ox | dt*| ox

* Allowed meromorphic solutions (dynamical laws):
V[x] = completely unconstrained.

T[] = (m/2)x’

AE = constant order 0 (classical mechanics)
no solutions order 1
O[x,%,...] =1 no solutions order 2

- —j order 3 (quantum mechanics, B = 7*)



Trajectory-Based Equations

* Technical Note:
— action extremization via “generalized” Euler-Lagrange eqn:

[(%} d {8L} d? {(%}
— | ——| = _|__2 - —..=(
ox | dt|ox | dt~| ox

* Final Form of Lagrangian:

-2 2 )
e IMX | 5x 1 X
HLesE= T ‘V[x]‘E(ZF_EF]

 Final Euler-Lagrange ODE (4%-order, real-valued)

(... A

o T .3
mi O A 8T 4+10=

dx  4m| x X X
\ )

=0




Reactive Scattering Calculations:
Cross Sections & Rates
Time independent

quantum trajectories s

tunneling through a || 1D Eckart barrier
Eckart potential:

V(z) = Vp sech®(ax) reflected
o =3.0a.u. forward — — transmitted
m = 2000 a.u. 1 1 2
Vo = 400 cm LL LR

U(zx — +00) = k;lmTeXp[z’ka]
U(r — —o0) = k;l/z (explikrz] + Rexp[—ikrz])

* Challenges in the continuum:
- Two linearly independent eigenstate solutions for each energy E,
requiring imposition of special boundary conditions.
-Energy eigenstates extend infinitely far in both directions, necessitating
use of optical potentlals to absorb outgoing flux.
—-Exact quantum dynamics calculation in the “deep” tunneling regime
nearly impossible, even in 1D.



Numerical Solution of the 1D TISE:
Eckart Barrier

irT T T T T T T 1 ——T—TT
-~ 2F 1 [\
5 ] >, _.
£ o i
=L = F
o =
U
4 'S I TR T E— [ | I | I 1 I
-8 -6 —4" -2 0 -4 -2 0 2
time (10" a.u.) position (a.u.)
Trajectory, x(7) Wavefunction density, o(x)

Solve 4% order real-valued ODE in ¢, to obtain x(z).
— similar to Newton’s second law, w/ extra terms.
— two 1nitial conditions specify £ and x,,.
— remaining two specify boundary conditions of solution v



Bipolar Quantum Trajectories:

Brazilian Nuclear Physics Collaboration
e Separate ¥ 1to forward and backward moving parts,
l.e. Y=¥. .+ ¥.
— contribute separate quantum trajectories for ¥, and ¥ _.

— “bipolar” trajectories show no oscillatory interference, 1.¢.
they are smooth and well-behaved everywhere.

M. S. Hussein and B. Poirier, “Quantum Trajectory Description of the
Time-Independent (Inverse) Fermi Accelerator”, BJP 51, 193 (2021).

15F

10F

! H ‘ l TN
R 1

~
~~a
~—
e ————

,/
,/
4
td
R4
-2
—
—

0 1 2 4

Wavefunction, T(x) Phase Space Trajectory, p(x)



Bipolar Quantum Trajectories:

Brazilian Nuclear Physics Collaboration

* Separate ¥ into forward and backward moving parts,
l.e. Y=¥. .+ ¥.

N. A. Coleta da Conceicao, B. V. Carlson, and B. Poirier, “Quantum
trajectories and the nuclear optical model”, Phys. Scr. 98, 115303 (2023).

¥ I

T T T T 1§ T T I T T
F W=0 p+ Fe E=10MeV 1=0

S I

Mo g a3
p+ Fe E=10MeV I=0

r (fm) ) r (fm)

Incoming, outgoing, and total wave functions for protons
incident on *°Fe at 10 MeV for partial wave /= 0.
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First principles derivation: 1D time-independent case

Noether’s theorem / symplectic structure / numerics
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Time dependent case / multi-dimensional case
Relativistic generalization




Noether’s Theorem

Emmy Noether

“There 1s...a minority...who recognize...that the most beautiful and satisfying
experiences open to humankind are not derived from the outside, but...with the
development of the individual's own feeling, thinking and acting. The genuine
artists, investigators and thinkers have always been persons of this kind.
However inconspicuously the life of these individuals runs its course, none the
less the fruits of their endeavors are the most valuable contributions which one
generation can make to its successors. Within the past few days a distinguished
mathematician, Professor Emmy Noether...died in her fifty-third year. In the
judgment of the most competent living mathematicians, Fraulein Noether was
the most significant creative mathematical genius thus far produced since the
higher education of women began.

Einstein’s Obituary (excerpts)

“Any differentiable symmetry (invariance) of the
action of a physical system has a
corresponding conservation law.”



scattering through a 1D Eckart barrier

. . . . . . SF ' ' ' ! ! 42
e Main difference with classical trajectories —
on the left (reactant) asymptote: < .
® p = mZI 1s not conserved. S
C
)
e one can show that Noether momentum £ °T 1
L . E
. R R 232 5
PNoether = MZT + -4 5 < i
dm \ = T 3
. Z
1s conserved - 7 —— — J0
-3 -2 -1 0 1 2 3

e Asymptotic pNoether: Position (a.u.)

B B 1+ |R|?
PL = pNoether(t — —OO) — hkL (1 — |R|2)

e Transmission probability:

 2hky
~ hkp +pr

Pr



scattering through a 1D Eckart barrier

Transmission as a function of Energy

E / Vb Exact Present calculation Rel. error
1.(—12) 28508(—12) 28522(—12) +5.(—04)
1.(—09) 28507873(—09) 28507863(—09) —4.(—07)
1.(—06) .28507940681(—06) .28507940697(—-06) +5.(—10)
1.(—03) 285757547947374(—03) 285757547947352(—03) —8.(—14)
1.(—01) 356449541539905(—01) 356449541539893(—01) —4.(—14)
0.5 S18986860221912 S1RI86860221873 —1.(—13)
1.0 .716641955866101 .716641955866092 —1.(—14)
1.5 900592641583308 900592641583281 —3.(—14)
2.0 963615495020163 963615495020159 —4.(—15)
10.0 999998078464427 999998078464407 —2.(—14)

Can propagate for 102 a.u. of time with energy

= .
conservation ~ 1. 1012



Classical Hamiltonian Form for the
1D TISE ODE

Turns out to be identical to Ostrogradski Approach...

* Search for a quantum Hamiltonian form to describe the
1D TISE ODE for x(7).

- Fourth-order ODE equivalent to four coupled 1%t order ODEs

— Incredibly, these can be written as ordinary classical
Hamilton's equations for a two degree of freedom system!)

, oH | oH = o0H oH
X == — , p = —— , y — —— , = ——
ap 0x as or
s2p —s) 2r2st
H(x’p,r,s): —|—V(X)— 9
2m mt

* (x,p) are “classical” conjugate phase space variables,
and (7,s) describe an additional “quantum” coordinate.

, h2x - A2 (X 2i?
S =mx ; r = ; = mx —
am2it * P 4m \ x4 x5

, oV(x)  drs* p—s 8ris’
; p:— 5 = , ry =

S
m ox m#? m mh?2

X =
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First principles derivation: 1D time-independent case
Noether’s theorem / symplectic structure / numerics

Time dependent case / multi-dimensional case
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Relativistic generalization




Quantum Trajectories Derivation
1D Time-dependent Wavepackets

 Individual trajectories no longer able to represent w(x,1).
— the wavefunction v (x,7) 1s replaced with an ensemble of trajectories, x(C.¢).
— parameter C labels individual trajectories within the ensemble.
— resembles classical statistical mechanics.
« Variables x and ¢ no longer related via coordinate transformation.
— trajectory field description provided by x=x(C.¢).
— (C1s a parameter used to distinguish a given trajectory for all t.
— e.g., C = x,=x(x,,t=0) 1s the initial value of a given trajectory in the ensemble.
— other choices of the C parameter also exist.



Quantum Trajectories Derivation
1D Time-dependent Wavepackets

* Trajectories governed by their own self-contained PDE.

— we now have “spatial” derivatives in terms of C, (1.e., across trajectories),
in addition to time derivatives.

— allowed forms of T[], V[], and Q[] turn out to be 1dentical to time-
independent case, except with C rather than ¢ derivatives for Q[].

— all quantum effects/quantum forces arise from C derivatives, 1.e. stem
from 1nteraction across nearby worlds.

* Goal: Derive a PDE to describe time evolution of x(C,¢) field.
— depends on partial derivatives in both time and space (really C):

82 X h2 X! X! x!"" X//3
mw + Vx(X, t) + am (X’4 —8 X’5 + 10)(/6> =0.




1D Time-dependent Wavepackets
Noether’s Theorem and Conservation Laws

Energy Conservation Law (requires only that V' be independent of {):
m . K2 x!I? ;2 Oc P A Y /v
or | =x% + V(x — — X — =
" <2 TV g X,4> T am \ (3T X8 x4 0
Momentum Conservation Law (requires only that IV be independent of x):

. h2 X" 2X”2
8t(mx)+8c< 1= —F ) =0

4m X/ X/

“C” Conservation Law (always true !!):

2 11 12
Ot (mxx") + d¢ <_1m)'(2+ V(x) + i <2X3 B )) — 0

2 8m \ x/ x4

., dS ox
note: mxx' =———

dx oC

_ B where § = phase/action

- dc




Quantum Trajectories Derivation
1D Time-dependent Wavepackets

.........

02 .‘
/
0

b.\\*\-.

Density -, = 2 against x at t = 1 for p; = 30, using
N = 200, 400, 800 trajectories, and a time step close to the
stability limit.



Trajectories for Wavepacket Dynamics
Arbitrary Dimensionality

ManyD Case
K™ =J = Jacobian matrix (J' = dx'/ dC”)
L:%X-X—V(X)—Q
w2 PK 10K 9K
Q: K & l k l
am| 7 9C 5’C 29Ck JC
*K!

.ei

mx —+

V(x) n d X
ox'  4moCc™"| !

 ManyD “C” Conservation Law:

K-

L=

1D case
'=J=0x/0C=x"

EX -V(x)-0

— trajectory ensemble now vector field, x(C,t)
— symmetries, conservation laws, stress-energy tensors, etc.
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Relativistic Generalization
e Usual approach with W-based Lagrangian leads to

Klein-Gordon wave equation, which fails to give a
meaningful single-particle interpretation.
— The free-particle Klein-Gordon equation is:

[— a(a;)z +V7+ (%)zld)(t,x) =0

— Non-physical negative-energy solutions.

— The temporal part of the four-current density is:

I (cp*ﬁq)_q)ﬁq)*j
0 . o 2me\ ot ot
— ] 18 not positive-definite in general.

— The four-current density j 1s not time-like 1n general.

e Our approach is “natural,” because 1t 1mnvolves action-
extremizing trajectories.

— All of above issues seem to be avoided in our relativistic
trajectory-based approach!!

— Why? Precisely because of the C conservation law!



Ct

Relativistic Trajectory Equation
Gaussian Wavepacket

» Relativity demands that
space and time be treated
on an equal footing, so ¢
must be a dep. var.

e The ensemble of quan-
tum trajectories are
contours of a “global
spacelike” coord., C(x,?).
* Conversely, there ought
to be a “global time-like
coordinate”, T(x,?).

*The contours of T(x,?)

provide simultaneity for
accelerating particles.



Ct

Simultaneity for
Accelerating Particles (1+1)

* According to relativity
theory, local
simultaneity can be
defined for accelerating
particles, but global
simultaneity can not.




Ct

Simultaneity for Accelerating
QOuantum Particles (1+1)

* The system now
consists of an ensemble
of quantum trajectories.

 Each trajectory has its
own local simultaneity
segments.



Ct

Simultaneity for Accelerating
QOuantum Particles (1+1)

* The system now
consists of an ensemble
of quantum trajectories.

*Each trajectory has its
own local simultaneity
segments.

*Gluing all of these
together, we can
construct global
simultaneity
submanifolds.



Ct

Simultaneity for Accelerating
QOuantum Particles (1+1)

* The system now
consists of an ensemble
of quantum trajectories.

*Each trajectory has its
own local simultaneity
segments.

*Gluing all of these
together, we can
construct global
simultaneity
submanifolds.



Ct

Simultaneity for Accelerating
QOuantum Particles (1+1)

* The system now
consists of an ensemble
of quantum trajectories.

*Each trajectory has its
own local simultaneity
segments.

*Gluing all of these
together, we can
construct global
simultaneity
submanifolds.



Relativistic Trajectory Equation
Simultaneity for accelerating particles

Ct

» The contours of T(x,?)

restores the relativistic
notion of simultaneity,
for accelerating
particles.

 However, this does not
work for just any
velocity field...

* ...anecessary
condition 1s that
the C conservation law

must be satisfied!



Some “Have You Tried?” Questions:

* Bound eigenstate calculations: yes

« 1D wavepacket calculations: yes

* Multidimensional generalization: yes

* Mixed quantum classical methods: yes, but need help
* (Quantum capture probabilities: yes, but need help
e Spin generalization: yes

« Relativistic conservation laws: yes

« Relativistic “Gaussian” wavepackets: yes

* Lorentz-transformed wavepackets: yes

« Single-particle Dirac equation: working on it

« Multiple-particle Dirac equation: definitely need help

e Others working on cosmology, but still could use some help
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=/ Continuous vs. Dlscrete MIW
R fContinuous MIW Discrete MIW

continuous ensemble, x(C.,¢) discrete ensemble, x(7)
exact solution of PDE approximate discretization
unique dynamical law dynamical law unspecified
action extremization principle unclear at present
Invariance/symmetry principle unclear at present
relativistic generalization unclear at present
Heisenberg/many-D/spin under development
probability measure required probability arises naturally
natural classical limit natural classical limit

no trajectory crossing no trajectory crossing
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Relativistic Trajectory Theory
Motivated by Two Questions:

1. What is the Schroedinger equation the non-
relativistic limit of ?

Dynamics

2. Why does relativity theory provide no notion of
global simultaneity for accelerating particles?

Kinematics
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Einsteinian Relativity (1+1)

* Simultaneity well-
defined for a given
inertial observer, but,
depends on observer.




Ct

Einsteinian Relativity (1+1)

* Simultaneity well-
defined for a given
inertial observer, but,
depends on observer.

* A single 1nertial
particle (red curve)
suffices to define an
entire (ct’, x") inertial
frame (whose contours
are the dashed and solid
lines, respectively.)




Quantum Accelerated and
Quantum Inertial Motion (1+1)

* Even for a single relativistic free particle, quantum forces
can give rise to quantum accelerated motion, 1.e. curved
quantum trajectories and simultaneity submanifolds.

* As a special case, a single relativistic free particle can also
undergo quantum inertial motion, when O0=0 everywhere.

— Trajectories are parallel straight lines, corresponding to contours of
Lorentz-transformed x".

— "Simultaneity submanifolds" are also parallel straight lines,
corresponding to ct' TIT T

e This corresponds to the SR notion ot an inertial frame.




Spacetime of a Relativistic
Quantum Particle

* The spacetime of a single relativistic spin-zero
particle 1s represented by a 4D Reimannian
manifold, which 1s presumed flat.

* A global inertial frame can be defined. The
inertial coordinates are: x® = (ct,x) «=01.23

 Detfine the Minkowski metric tensor:

1.0 0 0
[ o 1 0 0
™10 010

0 0 0 1

* The proper time 1s defined as:

1
dr? = ——5 Nap dz®dz’
c




Ensemble Time and Natural Coords

« Simultaneity submanifolds are contours of a scalar function,
called the ensemble time /,

* Define a system of natural coordinates:
X = (ci,C i)
where C' are the trajectory labels. For now, we allow arbitrary
reparametrizations: A — A'=A'(A) and C — C' = C'(C)
* The metric tensor of the natural coordinates and that of the
inertial coordinates are related by:

ox“ 8xﬂ ~ [ 9oo 0

= 77 ,3 g - 0 ~
T oXt 0XY 4

* Note that the metric tensor is block-diagonal.

e Define:

g

g =det(g) y =det(7)



Ensemble Time and the
Generalized Twin “Paradox”

Simultaneity submanifolds are contours of a scalar time-like
function, called the ensemble time,

Is it possible to take proper time 7 fo be an ensemble time, A ?
— In general, NO, this 1s not possible.
— The relation between t and A can be found from the metric tensor:

>

— Note: g, 1s negative, in keeping with the -+++ metric signature.

The difference between T and A gives rise to the generalized
(quantum) twin paradox.
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Regular Twin “Paradox™

e Two “twin” observers
cross paths at the blue
circle event.

Left twin: inertial
motion; right twin:
accelerated motion
*Right twin 1s younger
when paths recross at
the red circle event.




Generalized (Quantum)
Twin “Paradox”

Ct

* Two “copies” of the
same observer follow
two, non-crossing
paths.

*Both agree that the two
blue circle events occur
simultaneously.

*Both also agree that
the two red circle events
occur simultaneously.

*One trajectory has
experienced less
elapsed proper time

than the other.



Ensemble Proper Time, & the
Relativistic Quantum Potential

Of all choices of ensemble time coordinates, A , one choice 1s
special. We call it the ensemble proper time, denoted T

There is a close connection between T and O, the
(relativistic) quantum potential:

ar | Q@
d7 T = ©XP me?

Note: T reduces to t, in the limit of quantum inertial motion.

Note: Q itself plays a dynamical role, and not just its
gradient, the quantum force!

— Reminiscent of the gravitational potential.



Ensemble Proper Time, & the
Relativistic Quantum Potential

« Gravitational potential vs. quantum potential
(weak-field limit)

—|1+2 5 | Gpo ®—| 172 >
mc mc

Note: O can be either positive OR negative!
When Q > 0 (classically allowed), dt < dT”

— The passage of the proper time for a given trajectory is slower
than that of an inertial trajectory (time dilation).

When O < 0 (classically forbidden), dt > d7T”

— The passage of the proper time for a given trajectory is faster
than that of an inertial trajectory (time compression).
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Relativistic Derivation
Dynamical PDE (egs. of motion)

* By extremizing the action, we obtain the
equation of motion for the trajectory ensemble.

O°x" _ [_ 20 }f“ 1 90 &x*
66 2 P me: | m me: 6T oT

 PDE is fourth order in C, second order in T, but
treats all inertial coordinates x* on equal footing.

* Choosing uniformizing coordinates:| ——<—

__h2 s O 12, ij O i " ox“ . O
0= pr A A A A E £ = ¥ ——0




Classical Hamiltonian Form for the
1D TISE ODE

Turns out to be identical to Ostrogradski Approach...

* Search for a quantum Hamiltonian form to describe the
1D TISE ODE for x(7).

- Fourth-order ODE equivalent to four coupled 1%t order ODEs

— Incredibly, these can be written as ordinary classical
Hamilton's equations for a two degree of freedom system!)

, oH | oH = o0H oH
X == — , p = —— , y — —— , = ——
ap 0x as or
s2p —s) 2r2st
H(x’p,r,s): —|—V(X)— 9
2m mt

* (x,p) are “classical” conjugate phase space variables,
and (7,s) describe an additional “quantum” coordinate.

, h2x - A2 (X 2i?
S =mx ; r = ; = mx —
am2it * P 4m \ x4 x5

, oV(x)  drs* p—s 8ris’
; p:— 5 = , ry =

S
m ox m#? m mh?2

X =



1D Time-Independent Hamiltonian
Completely Integrable Form

* Original Hamiltonian form:

s2p — ) 2r2st
H(xaparas): 2m = V(x)_ mhz

* Canonical transform (free particle case):

X=x+rs/p ; P=p ; r'=rmp ; s'=s/p

P2
H(X,P,r',s"y=—~n(r',s"), where
2m

h(r',s"=s'(2-s"Y—4r"”s"/h* = const

— H(X,P,r’,s’) 1s now completely separable/integrable.

— X(¢) 1s now linear for free particles (even with interference),
and otherwise smoothly varying with V(x).



Revised Quantum Trajectory Convergence
Completely Integrable Form
* New form for P;1s now suggested:
P, =2hk/(hk+P) where fk=.[2m[ E-V(X)]
* Yields much better results when applied to Li+CaH:

0.3

local capture probability
o
o
|

02 1 1 1
10 50
internuclear distance (a,)



Derivation of the 1d PDE

Bohmian trajectories

Substituting ¥(x, t) = R(x, t)e’SX:D/7 (R, S real) into

: h?

lh¢t — _%prx + V(X, t)¢
gives

R + L L 0,
m 2m

S2 " R

Bohmian trajectories are obtained by solving
ax
ma = Sy .

This gives us a one parameter family of trajectories x(t, C)
where C is some trajectory label.

Schiff, Poirier QM Without Wavefunctions 2



Derivation of the 1d PDE

The change of coordinates

Change spatial coordinate from x to C. To avoid confusion, do
a full change of coordinates from (x, t) to (C,s) witht = s
(derivatives with respect to t are at constant x, derivatives with
respect to s are at constant C). Writing x’ for 9%

(o 0
<6C_ OX
7 80,0
.\ 9s  mox Ot

Schiff, Poirier QM Without Wavefunctions 2



Derivation of the 1d PDE

The R equation

The R equation becomes

2 R /
>:0:> F1’S+R X =0 = RS+—6—X:O.

A 2x' 0COs 2x’ Os

+E 0 ([0x
2 0x \ 0s
Mutliplying by 2Rx’ we have 2 (R2x’) = 0 implying R?x’ is a

function of C alone,
R2x = f(C).

Schiff, Poirier QM Without Wavefunctions 2



Derivation of the 1d PDE

Parametrizations

C can be taken to be the value of the trajectory at time O,
C = x(0), in which case f(C) = R(0, C). It is equally valid to
take C to be any monotone increasing function of x(0); C can
take values in either a finite or an infinite interval. Given 2

parametrizations, C; and Co,

dcC
f1(C1)d—C; = h(C2) .

A convenient choice is
X0
C= / R(0, xp)?dxg -

In this parametrization C takes values from O to 1, and f(C) = 1
(assuming we are working with normalized wave packets).

Schiff, Poirier QM Without Wavefunctions 2




Derivation of the 1d PDE

The S equation

In the new parametrization

1

; .

This allows us to write the quanutm force in terms of the
kinematic quantity x’. and to write a PDE for x(C, s).
Differentiating the S equation with respect to x gives

2
m(&%- SXSZXX) + Vi(x, ) — =9 (RXX> =0.
m

R® =

m 2mox \ R
Moving to the new coordinates and simplifying this gives

2 2 1" 1" I 13
mZ X L v(x. )+ 2 (X _8X 2 110 ):o.

4m X/4 X/5 X/6

This is the modified Newton equation.

Schiff, Poirier QM Without Wavefunctions 2



