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Brief Outline for Remainder of Talk

1. Brief description of what this approach is.
2. First principles derivation: 1D time-independent case
3. Noether’s theorem / symplectic structure / numerics
4. Time dependent case / multi-dimensional case
5. Relativistic generalization



Getting Rid of Y Altogether:

Is Y Alive or Dead ?

How can that even be possible?

Not                  ,                But

Y 



But if not Y, then what?

• The wavefunction Y (x,t) is replaced with an ensemble 
(family) of trajectories, x(C,t).
– parameter C labels individual trajectories within the ensemble.
– resembles classical statistical mechanics/trajectory simulations.

• The individual trajectories turn out to be the quantum 
trajectories of David Bohm. However…

• This is NOT Bohmian Mechanics!
– Bohm uses a single trajectory, x(t).
– Bohm also uses the wavefunction, Y(x,t).

Answer: Trajectories only



Copenhagen quantum 
mechanics

Bohmian mechanics Quantum trajectory-based 
formulation (non-relativistic)

Ψ represents the state of 
the system. TDSE 
drives evolution of       
Ψ(x,t).

Ψ and x(t) together 
represent the state of 
the system. Ψ leads to 
quantum potential Q, 
driving trajectory 
dynamics via:

There is no Ψ.  x(t, C) (trajectory 
ensemble) alone represents the 
state of the system, and leads to Q.   
x(t, C)  satisfies its own PDE that 
replaces the TDSE (with ' denoting 
partial derivative w/ respect to C.)

m!!x + ∂V (x)
∂ x

+ ∂Q(x,t)
∂ x

= 0



Copenhagen quantum 
mechanics

Bohmian mechanics Quantum trajectory-based 
formulation (non-relativistic)

Ψ represents the state of 
the system. TDSE 
drives evolution of       
Ψ(x,t).

Ψ and x(t) together 
represent the state of 
the system. Ψ leads to 
quantum potential Q, 
driving trajectory 
dynamics via:

There is no Ψ.  x(t, C) (trajectory 
ensemble) alone represents the 
state of the system, and leads to Q.   
x(t, C)  satisfies its own PDE that 
replaces the TDSE (with ' denoting 
partial derivative w/ respect to C.)

1.  x was an independent variable, but is now the 
dependent field quantity.

2. PDE 4th order in “space” (C), 2nd order in time (t).   
C and t not treated on equal footing; are x and t ?

3. “Spatial” derivatives = interworld interaction = 
quantum “weirdness.” 

4. Trajectory PDE shows no explicit dependence on C 
and t (and x if V = const) unlike in Bohm.  

5. Ensemble of quantum trajectories foliate spacetime 
(no crossing trajectories).

Key Mathematical Features:
m!!x + ∂V (x)

∂ x
+ ∂Q(x,t)

∂ x
= 0
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• Start “from scratch”; assume almost no knowledge of:
– classical mechanics (Newton’s Laws)
– quantum mechanics (TISE).

• “Trial” trajectory x(t) completely unconstrained
– i.e. x(t) is a path, not yet a trajectory.

• Posit existence of two “functional forms” of x(t).
– f [x] (depends on x; essentially potential energy)
– g[  ] (depends on   ; essentially kinetic energy)
– NO assumptions are made about form of f [x] and g[ ]!
– Space x assumed to be homogeneous (for simplicity).

x
x

x

Theoretical/Mathematical Ramifications
First Principles Derivation



Physical Constraint #1:
Action Extremization

• For all possible smooth paths x(t) that connect:
– initial point (x0,t0) with final point (xf,tf)
– dynamical solution trajectory = x(t) path that extremizes action, S.

• Definition of action:

• Solution x(t) satisfies Euler-Lagrange equation:

• Note: f[x] and g[  ] are still completely unspecified!
– e.g.,                    would be permissible. 
– however, for any specific choice of f and g,  the solution x(t) 
 is now completely determined.
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Physical Constraint #2:
Hamiltonian Energy Conservation

• For all possible smooth paths x(t) with initial conditions:
 x(t0)=x0   and    
 dynamical solution trajectory = x(t) path that conserves Hamiltonian, H.

• Form of Hamiltonian:

• Solution x(t) satisfies Hamiltonian energy conservation: 

• Note: f[x] and g[  ] are still completely unspecified!
– however, for any specific choice of f and g,  the solution x(t) 
 is now completely determined.

x

)]([)]([)](),([ txftxgtxtxH += 

H[x(t), !x(t)]= H (t) = constant

00 )( xtx  =



Combining Both Constraints
• Either physical constraint by itself leads to a unique set of 

solution trajectories
– In general, i.e. for arbitrary choice of f[x] and g[  ], 
 Action extremizing trajectories are not the same as Hamiltonian 

conserving trajectories
• Satisfying both conditions simultaneously is very special:

– Noether’s theorem: explicit t invariance of L implies existence 
of a conserved energy quantity, denoted E.

– Our condition: that Noether E be equal to the Hamiltonian H.
– imposes severe restrictions on allowed forms for f [x] and g[  ].

x

x



• What are the most general possible forms consistent with 
both action extremization and Hamiltonian conservation?
 f [x] = completely unconstrained = V[x]

 
• These are precisely the most general possible forms that 

are considered in classical mechanics.
– thus, classical mechanics satisfies both of the two physical 

constraints, that we have imposed (already known).
– but no other choices for f[x] and g[  ] (i.e., no other candidate 

dynamical laws) can do so.

g[ !x]= A !x2 = (m / 2) !x2 = T[ !x]

x

Combining Both Constraints



Harmonic Potential Trajectories

f[x]=V[x] = (1/2) x2

t

x(t)
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Quantum Trajectories Derivation
 1D Stationary Scattering States

• Requires modification of the           and            forms.
• Requires higher-order time derivatives.

– consider contact/point transformation from coordinate x to y.
– transformed functionals now mix y and  , however...
– no new physics added, i.e. result still classical mechanics. 

• Posit existence of higher-order functional forms:
],,,[  xxxLL =
],,,[  xxxHH =

],[ xxL  ],[ xxH 

y



• Space x assumed to be homogeneous (for simplicity).
• Posit existence of higher-order quantum correction, Q:

• Q resembles a potential energy:
– connects to “quantum potential” of Bohm theory.
– adds to H but subtracts from L, like a potential energy. 

• Q resembles a kinetic energy:
– kinematic quantity that cannot depend on x.
– quantum “potential” actually comes from K.E. operator.

],,[][][],,,[  xxQxVxTxxxL --=
],,[][][],,,[  xxQxVxTxxxH ++=

Quantum Contribution to 
L and H Functional Forms



• Technical Note: 
– action extremization via “generalized” Euler-Lagrange eqn:

• Allowed meromorphic solutions (dynamical laws):
 V[x] = completely unconstrained.

Q[ !x, !!x,…]=

ΔE = constant              order 0 (classical mechanics)            
no solutions              order 1                                          
no solutions              order 2                                         

− B
2m

5
4
!!x2

!x4 −
1
2
!!!x
!x3

⎛
⎝⎜

⎞
⎠⎟

      order 3 (quantum mechanics, B = "2 )

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

2)2/(][ xmxT  =

Functional Form of Q

02

2

=-úû
ù

êë
é
¶
¶

+úû
ù

êë
é
¶
¶

-úû
ù

êë
é
¶
¶


 x
L

dt
d

x
L

dt
d

x
L



• Technical Note: 
– action extremization via “generalized” Euler-Lagrange eqn:

• Final Form of Lagrangian:

• Final Euler-Lagrange ODE (4th-order, real-valued)
 

L[x, !x, !!x,!!!x ]= m
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Reactive Scattering Calculations:
 Cross Sections & Rates 

Time independent

• Challenges in the continuum:
- Two linearly independent eigenstate solutions for each energy E, 
requiring imposition of special boundary conditions.
-Energy eigenstates extend infinitely far in both directions, necessitating 
use of optical potentlals to absorb outgoing flux.
-Exact quantum dynamics calculation in the “deep” tunneling regime 
nearly impossible, even in 1D.



Numerical Solution of the 1D TISE:
Eckart Barrier

Solve 4th order real-valued ODE in t, to obtain x(t).
– similar to Newton’s second law, w/ extra terms.
– two initial conditions specify E and x0.
– remaining two specify boundary conditions of solution ψ

Wavefunction density, ρ(x) Trajectory, x(t)



Bipolar Quantum Trajectories:
Brazilian Nuclear Physics Collaboration

• Separate Y into forward and backward moving parts, 
i.e. Y = Y + + Y -.
– contribute separate quantum trajectories for Y + and Y - .
– “bipolar” trajectories show no oscillatory interference, i.e. 

they are smooth and well-behaved everywhere. 

Wavefunction, Y(x) Phase Space Trajectory, p(x)

M. S. Hussein and B. Poirier, “Quantum Trajectory Description of the 
Time-Independent (Inverse) Fermi Accelerator”,  BJP 51, 193 (2021).



Bipolar Quantum Trajectories:
Brazilian Nuclear Physics Collaboration

• Separate Y into forward and backward moving parts, 
i.e. Y = Y + + Y -.

Incoming, outgoing, and total wave functions for protons 
incident on 56Fe at 10 MeV for partial wave l = 0.

N. A. Coleta da Conceição, B. V. Carlson, and B. Poirier, “Quantum 
trajectories and the nuclear optical model”, Phys. Scr. 98, 115303 (2023).
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Noether’s Theorem

Emmy Noether Einstein’s Obituary (excerpts)

“There is…a minority…who recognize…that the most beautiful and satisfying 
experiences open to humankind are not derived from the outside, but…with the 
development of the individual's own feeling, thinking and acting. The genuine 
artists, investigators and thinkers have always been persons of this kind. 
However inconspicuously the life of these individuals runs its course, none the 
less the fruits of their endeavors are the most valuable contributions which one 
generation can make to its successors. Within the past few days a distinguished 
mathematician, Professor Emmy Noether…died in her fifty-third year. In the 
judgment of the most competent living mathematicians, Fräulein Noether was 
the most significant creative mathematical genius thus far produced since the 
higher education of women began.

“Any differentiable symmetry (invariance) of the 
action of a physical system has a 
corresponding conservation law.”



scattering through a 1D Eckart barrier

Main difference with classical trajectories 
on the left (reactant) asymptote:

               is not conserved.
one can show that Noether momentum 

is conserved
Asymptotic pNoether:

Transmission probability:



scattering through a 1D Eckart barrier

Transmission as a function of Energy

Can propagate for 108 a.u. of time with energy 
conservation ~ 1. 10–12☞



Classical Hamiltonian Form for the
1D TISE ODE

• Search for a quantum Hamiltonian form to describe the              
1D TISE ODE for x(t).
- Fourth-order ODE equivalent to four coupled 1st order ODEs
- Incredibly, these can be written as ordinary classical 

Hamilton’s equations for a two degree of freedom system!)

• (x,p) are “classical” conjugate phase space variables, 
and (r,s) describe an additional “quantum” coordinate.

Turns out to be identical to Ostrogradski Approach...
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Quantum Trajectories Derivation
 1D Time-dependent Wavepackets

• Individual trajectories no longer able to represent ψ(x,t).
– the wavefunction ψ (x,t) is replaced with an ensemble of trajectories, x(C,t).
– parameter C labels individual trajectories within the ensemble.
– resembles classical statistical mechanics.

• Variables x and t no longer related via coordinate transformation. 
– trajectory field description provided by x=x(C,t).
– C is a parameter used to distinguish a given trajectory for all t.
– e.g., C = x0=x(x0,t=0) is the initial value of a given trajectory in the ensemble.
– other choices of the C parameter also exist. 

                                                                       



Quantum Trajectories Derivation
 1D Time-dependent Wavepackets

• Trajectories governed by their own self-contained PDE.
– we now have “spatial” derivatives in terms of C, (i.e., across trajectories), 

in addition to time derivatives.
– allowed forms of T[], V[], and Q[] turn out to be identical to time-

independent case, except with C rather than t derivatives for Q[].
– all quantum effects/quantum forces arise from C derivatives, i.e. stem 

from interaction across nearby worlds. 

• Goal: Derive a PDE to describe time evolution of x(C,t) field.
– depends on partial derivatives in both time and space (really C):

                                                                 



1D Time-dependent Wavepackets
Noether’s Theorem and Conservation Laws
Energy Conservation Law (requires only that V  be independent of t):

Momentum Conservation Law (requires only that V  be independent of x):

“C” Conservation Law (always true !!):

note:    m!x ′x = dS
dx

∂x
∂C t

= dS
dC

     where S =  phase/action



Quantum Trajectories Derivation
 1D Time-dependent Wavepackets



Trajectories for Wavepacket Dynamics 
Arbitrary Dimensionality

ManyD Case       1D case

L = m
2
!x ⋅ !x −V (x)−Q

K −1 = J =  Jacobian matrix (J j
i = ∂ xi / ∂C j )
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• ManyD “C” Conservation Law:
– trajectory ensemble now vector field, x(C,t) 
– symmetries, conservation laws,  stress-energy tensors, etc. 



Brief Outline for Remainder of Talk

1. Brief description of what this approach is.
2. First principles derivation: 1D time-independent case
3. Noether’s theorem / symplectic structure / numerics
4. Time dependent case / multi-dimensional case
5. Relativistic generalization



Relativistic Generalization
• Usual approach with Ψ-based Lagrangian leads to 

Klein-Gordon wave equation, which fails to give a 
meaningful single-particle interpretation.
– The free-particle Klein-Gordon equation is:

– Non-physical negative-energy solutions.
– The temporal part of the four-current density is:

–     is not positive-definite in general.
– The four-current density    is not time-like in general.

• Our approach is “natural,” because it  involves action-
extremizing trajectories.
– All of above issues seem to be avoided in our relativistic 

trajectory-based approach!! 
– Why? Precisely because of the C conservation law!
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• Relativity demands that 
space and time be treated 
on an equal footing, so t 
must be a dep. var.
• The ensemble of quan-
tum trajectories are  
contours of a “global 
spacelike” coord., C(x,t).
• Conversely, there ought 
to be a “global time-like 
coordinate”, T(x,t). 
•The contours of T(x,t) 
provide simultaneity for 
accelerating particles.

Relativistic Trajectory Equation
 Gaussian Wavepacket 



Simultaneity for 
Accelerating Particles (1+1)

• According to relativity 
theory, local 
simultaneity can be 
defined for accelerating 
particles, but global 
simultaneity can not.



Simultaneity for Accelerating 
Quantum Particles (1+1)

• The system now 
consists of an ensemble 
of quantum trajectories.
• Each trajectory has its 
own local simultaneity 
segments.
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•Gluing all of these 
together, we can 
construct global 
simultaneity 
submanifolds.



Simultaneity for Accelerating 
Quantum Particles (1+1)

• The system now 
consists of an ensemble 
of quantum trajectories.
•Each trajectory has its 
own local simultaneity 
segments.
•Gluing all of these 
together, we can 
construct global 
simultaneity 
submanifolds.



• The contours of T(x,t) 
restores the relativistic 
notion of simultaneity, 
for accelerating 
particles.
• However, this does not 
work for just any 
velocity field…
• …a necessary 
condition is that          
the C conservation law 
must be satisfied!

Relativistic Trajectory Equation
 Simultaneity for accelerating particles



Some “Have You Tried?” Questions:
• Bound eigenstate calculations:  yes
• 1D wavepacket calculations:  yes
• Multidimensional generalization:  yes
• Mixed quantum classical methods: yes, but need help
• Quantum capture probabilities:  yes, but need help
• Spin generalization:   yes
• Relativistic conservation laws:  yes
• Relativistic “Gaussian” wavepackets: yes
• Lorentz-transformed wavepackets: yes
• Single-particle Dirac equation:  working on it
• Multiple-particle Dirac equation:  definitely need help
• Others working on cosmology, but still could use some help
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Continuous vs. Discrete MIW

continuous ensemble, x(C,t)
exact solution of PDE
unique dynamical law
action extremization principle
invariance/symmetry principle
relativistic generalization
Heisenberg/many-D/spin
probability measure required

natural classical limit
no trajectory crossing

Continuous MIW         Discrete MIW
discrete ensemble, xi(t)
approximate discretization
dynamical law unspecified
unclear at present
unclear at present
unclear at present
under development
probability arises naturally

natural classical limit
no trajectory crossing



Relativistic Trajectory Theory
Motivated by Two Questions:

1. What is the Schroedinger equation the non-
relativistic limit of ? 

 Dynamics

2. Why does relativity theory provide no notion of 
global simultaneity for accelerating particles?

 Kinematics



Einsteinian Relativity (1+1)

• Simultaneity well-
defined for a given 
inertial observer, but, 
depends on observer.



Einsteinian Relativity (1+1)

• Simultaneity well-
defined for a given 
inertial observer, but, 
depends on observer.
• A single inertial 
particle (red curve) 
suffices to define an 
entire (ct', x' ) inertial 
frame (whose contours 
are the dashed and solid 
lines, respectively.)



Quantum Accelerated and 
Quantum Inertial Motion (1+1)

• Even for a single relativistic free particle, quantum forces 
can give rise to quantum accelerated motion, i.e. curved 
quantum trajectories and simultaneity submanifolds.

• As a special case, a single relativistic free particle can also 
undergo quantum inertial motion, when Q=0 everywhere.
– Trajectories are parallel straight lines, corresponding to contours of 

Lorentz-transformed x'.
– "Simultaneity submanifolds" are also parallel straight lines, 

corresponding to ct' contours.

• This corresponds to the SR notion of an inertial frame.



Spacetime of a Relativistic 
Quantum Particle

• The spacetime of a single relativistic spin-zero 
particle is represented by a 4D Reimannian 
manifold, which is presumed flat.

• A global inertial frame can be defined. The 
inertial coordinates are:

• Define the Minkowski metric tensor:

• The proper time is defined as:

0,1,2,3a =



Ensemble Time and Natural Coords
• Simultaneity submanifolds are contours of a scalar function, 

called the ensemble time
• Define a system of natural coordinates:

    where Ci are the trajectory labels. For now, we allow arbitrary 
reparametrizations: λ → λ′ = λ′(λ) and C → C′ = C′(C)

• The metric tensor of the natural coordinates and that of the 
inertial coordinates are related by:

• Note that the metric tensor is block-diagonal.
• Define:
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Ensemble Time and the 
Generalized Twin “Paradox”

• Simultaneity submanifolds are contours of a scalar time-like 
function, called the ensemble time, 

• Is it possible to take proper time τ to be an ensemble time, λ ?
– In general, NO, this is not possible.
– The relation between τ and λ can be found from the metric tensor:

– Note: g00 is negative, in keeping with the -+++ metric signature.

• The difference between τ and λ gives rise to the generalized 
(quantum) twin paradox. 

l



Regular Twin “Paradox”

• Two “twin” observers 
cross paths at the blue 
circle event.
•Left twin: inertial 
motion; right twin: 
accelerated motion
•Right twin is younger 
when paths recross at 
the red circle event.



• Two “copies” of the 
same observer follow 
two, non-crossing 
paths. 
•Both agree that the two 
blue circle events occur 
simultaneously.
•Both also agree that 
the two red circle events 
occur simultaneously.
•One trajectory has 
experienced less 
elapsed proper time 
than the other.



Ensemble Proper Time, & the 
Relativistic Quantum Potential

• Of all choices of ensemble time coordinates, λ , one choice is 
special.  We call it the ensemble proper time, denoted T.

• There is a close connection between T and Q, the 
(relativistic) quantum potential:

• Note: T reduces to τ, in the limit of quantum inertial motion.
• Note: Q itself plays a dynamical role, and not just its 

gradient, the quantum force!
– Reminiscent of the gravitational potential.



Ensemble Proper Time, & the 
Relativistic Quantum Potential

• Gravitational potential vs. quantum potential         
(weak-field limit)

• Note: Q can be either positive OR negative!
• When Q > 0 (classically allowed), dτ < dT

– The passage of the proper time for a given trajectory is slower 
than that of an inertial trajectory (time dilation).

• When Q < 0 (classically forbidden), dτ > dT
– The passage of the proper time for a given trajectory is faster 

than that of an inertial trajectory (time compression).
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Relativistic Derivation
 Dynamical PDE (eqs. of motion)

• By extremizing the action, we obtain the 
equation of motion for the trajectory ensemble.

• PDE is fourth order in C, second order in T, but 
treats all inertial coordinates xα on equal footing.

• Choosing uniformizing coordinates:
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Classical Hamiltonian Form for the
1D TISE ODE

• Search for a quantum Hamiltonian form to describe the              
1D TISE ODE for x(t).
- Fourth-order ODE equivalent to four coupled 1st order ODEs
- Incredibly, these can be written as ordinary classical 

Hamilton’s equations for a two degree of freedom system!)

• (x,p) are “classical” conjugate phase space variables, 
and (r,s) describe an additional “quantum” coordinate.

Turns out to be identical to Ostrogradski Approach...



• Original Hamiltonian form:

• Canonical transform (free particle case): 

– H(X,P,r’,s’) is now completely separable/integrable.
– X(t) is now linear for free particles (even with interference),   

and otherwise smoothly varying with V(x).

1D Time-Independent Hamiltonian
Completely Integrable Form

X = x + rs / p   ;   P = p   ;   r ' = rp   ;   s ' = s / p

H (X ,P,r ',s ') = P
2

2m
h(r ',s '),    where

h(r ',s ') = s '(2− s ')− 4r '2 s '4 / !2 = const



• New form for PT is now suggested:

• Yields much better results when applied to Li+CaH:

Revised Quantum Trajectory Convergence
Completely Integrable Form

PT = 2!k / (!k + P)   where   !k = 2m E −V (X )⎡⎣ ⎤⎦












