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Light-Matter interactions
Understand and control the emergent matter behaviors that emerge from complex correlations of
atomic, electronic, and photonic constituents

Photon

Electron Phonon

Bath

Plasmon chemistry

Polariton chemistry

Exascale computing
(Scalable & massively parallel

algorithms on CPU/GPU)

Quantum Computing

Spin dynamics & Quantum transduction.
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Polariton & polariton physics/chemistry

Polariton is a hybrid light-matter state.
Molecular properties become tunable via the
formation of polariton.
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How strong is the “strong coupling”

• Coupling should be strong enough to
compete with or overcome each
individual’s dissipation or dephasing
(line-width).

• The coupling strength can be
characterized by the energy
difference (Rabi splitting) between
upper and lower polariton states.
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Ways of achieving strong couplings and corresponding modeling
challenges

Coupling strength is ∝
√
N/V , N number of molecules, V cavity volume.

Photonic cavity – many molecules

Nat. Commun. 6, 5981 (2015)

• Pros: High quality (weak dissipation)
• Cons: large cavity volume (∼ λ3 or ∼ um3),

Many molecules (106 or more) are required.

Plasmonic cavity – Few molecules

Nature 535, 127(2016).

• Pros: Small mode volumes (∼ nm3), stronger
electric field.

• Cons: Lossy (strong dissipation)
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Experimental demonstrations

Exciton-polariton

Angew. Chem., Int. Ed. 2012, 51, 1592 (2012)

Nat. Mat. 13, 247 (2014)

Vibrational strong coupling

Science363, 615 (2019)

chemRxiv:7234721 (2018); JCP 154, 191103 (2021);
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Controversies in the field call for new atomistic methods to understand
the underlying physics

LA-UR-24-30223 Oct 2nd, 2024 | 8



Challenge of ab-initio modeling of polariton chemistry/physics
Light-Matter interaction is fundamentally a multiscale problem with multiple interactions across different
time/length scales. Cavity

• Realistic cavity property needs to be
solved from Maxwell’s equations

• Heterogenous field in nanoplasmonic
cavities

• Multimode cavity

Molecule:
• Realistic molecule/materials with (strong)

correlations (HF, Post-HF)
• Interplay between electronic, photonic, and

nuclear DOFs.
• Many molecules and disorders
• Solvent effects

Dynamical interactions among electrons,
nuclei, and photons across different
time/length scales
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Our developments

• Various QEDHF methods
• Quantum Monte-Carlo: Diffusion QMC
• Machine learning approach
• Auxiliary-Field Quantum Monte-Carlo
• QED-Coupled Cluster theories: “Linear-scaling” QED-CC
• Gutzwiller wavefunction method
• Multiscale (Coupled Maxwell-Schrödinger) solvers
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Introduction to the Hamiltonian

The nonrelativistic Pauli-Fierz Hamiltonian for molecular QED in the dipole approximation:

ĤPF =Ĥe +
∑
α

[
ωα(â

†
αâα +

1

2
)

+

√
ωα

2
λα · D̂(â†α + âα) +

1

2
(λα · D̂)2

]
.

• Ĥe: electronic Hamiltonian
Ĥe =

∑
µν hµν ĉ

†
µĉν + 1

2

∑
µνλσ Iµνλσ ĉ

†
µĉ

†
λĉσ ĉν .

• √
ωα
2
λα · D̂(â†α + âα): bilinear coupling term

• (λ · D̂)2: Dipole self-energy (DSE)

Compared to bare electronic Hamiltonian, QED Hamiltonian includes a) electron-electron, b)
electron-photon, and c) photon-mediated electron-electron correlations.
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1

2
(λα · D̂)2

]
.
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Introduction to QEDHF theory

QEDHF ansatz: decompose the wavefunction as
a single tensor product of electronic Hartree-Fock
reference and Photonic Fock states,

|Ψ⟩ = |HF⟩ ⊗ |0p⟩ ,

i.e., single determinant for both electronic and
photonic DOFs.
Then QEDHF energy is

EQEDHF = ⟨HF| Ĥe |HF⟩+ 1

2

∑
α

⟨(λα · D̂)2⟩.

The corresponding Fock matrix can be obtained
via Fµν = ∂E

∂ρµν
.

λα · D̂ Displace with r−−−−−−−−→ λα · D̂ +Qeλα · r̂

Chem. Phys. Rev. 4, 041301 (2023)

• QEDHF has an incorrect origin-dependence problem in the absence of a complete basis set.

In principle, QEDHF works for strong coupling, but in practice, QEDHF (in the absence of an infinite
basis set) is more like a weak coupling theory.
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QEDHF with coherent state

The origin-dependence problem in QEDHF can be mitigated with coherent state (CS) ansatz:

|Ψ⟩ = |HF⟩ ⊗ |zα⟩

where z = −λ·D√
2ω

is determined by the coupling strength.

Coherent state:
|zα⟩ ≡ ezαâ†

α−z∗αâα |0⟩ ≡ Û(zα) |0p⟩
i.e., it’s linear combination of Fock state:

|zα⟩ = e−
|zα|2

2

∞∑
n=0

znα√
n!

|nα⟩

where nα ∈ {0, 1, · · · ,∞}.

But the MOs are still origin-dependent since z factor is not a orbital-dependent displacement (example
will shown later).
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Introduction to sc-QEDHF theory (Polariton (Lang-Firsov)
transformation)

In the infinite coupling limite, i.e., Ĥep + Ĥp ≫ Ĥe, the
eigenstates of the PF Hamiltonian is

|Ψ∞⟩ = e
−

∑
α

λα√
2ωα

eα·D̂(âα−â†
α) |HF, 0⟩ ≡ Ûλ |HF, 0⟩ .

Polariton (Lang-Firsov) transformation

ĤPF |Ψ⟩ = E |Ψ⟩ −→ (Û†
λĤPF Ûλ) |HF, 0⟩ = E |HF, 0⟩

Electronic/photonic operators are displaced
under the transformation:

Û†
λĉνÛλ =

∑
ν

ĉνXµν ,

Û†
λâαÛλ =âα − λα√

2ωα

eα · D̂,

where
Xµν = exp

[
−
∑

α
λα√
2ωα

eα · D̂(â†α − âα)
]
|µν .

ĤPF =Ĥe +
∑
α

[
ωα(â

†
αâα +

1

2
) +

√
ωα

2
λα · D̂(â†α + âα) +

1

2
(λα · D̂)2

]
.

Before transformation

H̃ =Û†
λĤeÛλ +

∑
α

[
ωα(â

†
αâα +

1

2
) +

(((((((((((((((√
ωα

2
λα · D̂(â†α + âα) +

1

2
(λα · D̂)2

]
.

After transformation
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Polariton (Lang-Firsov) transformation
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Û†
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Example of SC-QEDHF method

SC-QEDHF solves the origin-invariance problem in energy and molecular orbitals.

But SC-QEDHF only works for (ultra)strong coupling regimes.
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Variational transformation for arbitrary coupling strengths

Comparison between polariton transformation and its variational counterpart: H̃ ≡ Û†HPFU.

Û(λ) = exp

[
−
∑
α

λα√
2ωα

eα ·D(âα − â†α)

]

H̃e =
∑
µν

hµνc
†
µX

†
µcνXν

+
∑
µνλσ

Iµνλσc
†
µX

†
µc

†
νX

†
νcλXνcσXν

H̃ph =0

where

Xµν = exp

[
−
∑
α

λα√
2ωα

dα(â†α − âα)

]
|µν .

Polariton transformation

• fα = λα leads to polariton transformation
• fα = 0 corresponds to no transformation.

Û(f) = exp

[
−
∑
α

fα√
2ωα

eα · D̂(âα − â†α)

]

H̃e =
∑
µν

hµνc
†
µX

†
µcνXν

+
∑
µνλσ

Iµνλσc
†
µX

†
µc

†
νX

†
νcλXνcσXν

H̃ph =
∑
α

√
ωα

2
(∆λα)eα ·D(â†α + âα)

+
(∆λα)

2

2
(eα ·D)2.

where

Xµν = exp

[
−
∑
α

fα√
2ωα

eα ·D(â†α − âα)

]
|µν .

Variational polariton transformation
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Variational transformation based self-consistent QEDHF method
(VT-QEDHF)

VT-QEDHF ansatz:

|Ψ⟩ = exp

[
−
∑
α

fα√
2ωα

eα · D̂(âα − â†α)

]
|HF ⟩ ⊗ |0p⟩ ,

VT-QEDHF energy in dipole basis (Eigenstate of eα · D̂):

E[ρ, {fα}] =
∑
pq

h̃pqρpq Gpq +
1

2

∑
pqrs

Ĩpqrs

(
ρpqρrs −

1

2
ρpsρrq

)
Gpqrs

+
∑
α

(∆λα)
2

2
⟨HF | ⟨0| (eα · D̂)2 |HF ⟩ |0⟩ .

• The formula is similar to the conventional QEDHF, but lifted all the drawbacks.
• One-body and two-body integrals are dressed by the coupling with f as the indicator of the

formation of polariton.
• Gpq = ⟨X†

pXq⟩ and Gpqrs = ⟨X†
pX

†
qXrXs⟩ are the Franck-Condon factors

• EVT-QEDT = minρ,{fα}E(ρ, {fα})|
∫
ρ(r)dr = N, 0 ≤ fα ≤ λα.
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Examples
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VT-QEDHF connects to QED-HF and SC-QEDHF
methods at the two limits.
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Ground state potential energy surface of the
C2N2H6 isomer.

Due to the more flexibility in the variational optimization:

EVT-QEDHF(f) ≤ EVT-QEDHF(f = λ) = ESC-QEDHF ≤ EQEDHF
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Translational invariance of VT-QEDHF methods

VT-QEDHF method conserves origin-independence in both energy and HOMO-LUMO gaps.
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Why mean-field method (or bosonic ansatz) matters?

QED-HF SC-QEDHF VT-QEDHF CCSD QED-CCSD FCI
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After extracting electron correlations

• Like the conventional HF method,
QEHF cannot capture the
electron-electron correlation

• Trivial QEDHF overestimates the
cavity effect.

• QED-CCSD (with trivial Fock states)
does not improve too much on the
electron-photon correlation

• But, better photon ansatz can
significantly improve the description
of electron-photon interactions.
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• Like the conventional HF method,
QEHF cannot capture the
electron-electron correlation

• Trivial QEDHF overestimates the
cavity effect.

• QED-CCSD (with trivial Fock states)
does not improve too much on the
electron-photon correlation

• But, better photon ansatz can
significantly improve the description
of electron-photon interactions.

LA-UR-24-30223 Oct 2nd, 2024 | 21

In preparation.



Why mean-field method (or bosonic ansatz) matters?
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Can we further improve the QEDHF method?
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Squeeze operator and uncertainty principle

Uncertainty principle (or Heisenberg’s indeterminacy principle): ∆x∆p ≥ ℏ
2
.

Squeeze operator

Ŝ(F ) = exp

[
1

2
(F ∗b̂† − F â†2)

]
can generate squeezed state from the vacuum

|F ⟩ = Ŝ(F ) |0⟩

For a quantum harmonic oscillator with frequency
ω,

x̂ =

√
2ℏ
mω

(â+ â†)

The uncertainties of x̂ and p̂ become,

(∆x)2 =
ℏ

2mω
e−2F

(∆p)2 =
mℏω
2

e2F

LIGO (Laser Interferometer Gravitational Wave
Observatory, Nobel prize in 2017) uses squeezed

states to improve the measurement precision.
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QEDHF with Variational squeeze ansatz

The ansatz is |Ψ⟩ = Û(f)Ŝ(F ) |HF⟩ ⊗ |0p⟩

The PF Hamiltonian after the transformation becomes,

ĤCS =Ĥe[X̂ (fα, F )] +
∑
α

e−r

√
ωα

2
(∆λα)eα ·D(b̂†α + b̂α)

+
(∆λα)

2

2
(eα ·D)2 + Ĥph.

The dressed photonic Hamiltonian Ĥph is

Ĥph = ωα

[
cosh(2r)(b̂†αb̂α +

1

2
)− sinh(2r)(b̂2α + b̂†2α )

]
.

X̂ij is

X̂ (f, F ) = Ŝ†(r)

[
e
− fαλ·D√

2ω
(b̂†α−b̂α)

]
Ŝ(r) = exp

[
−fαλ ·D√

2ω

(
b̂†α − b̂α

)
erα

]
.
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VSQ-QEDHF

Squeezing ansatz introduces the anharmonic effect (due to the electron motion) on the photon modes,
further lowers down the energy, particularly in the strong coupling regime.
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Light-matter entanglement

Trial QEDHF has no entanglement with the decoupled ansatz: |Ψ⟩ = |HF⟩ ⊗ |0p⟩

Entanglement in VSQ formalism:

|Ψ⟩ =e−
fλ·D(b̂−b̂†)√

2ω |HF⟩ ⊗ Ŝ(F ) |0p⟩ =
∑
i

Ci |i⟩ ⊗ |ηi, F ⟩
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Outline

Motivation

Variational Quantum Electrodynamics (QED) Hartree-Fock theory
Squeezing ansatz and light-matter entanglement

Quantum Monte Carlo methods for polariton chemistry

First-principles argumented methods toward collective coupling regime
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Quantum Monte Carlo method

Most ground-state QMC methods are based on the imaginary time evolution,

|Ψ0⟩ ∝ lim
τ→∞

e−τĤ |ΨT ⟩ .

that projects out the ground state |Ψ0⟩ of Ĥ from any known trial state |ΨT ⟩ if ⟨ΨT |Ψ0⟩ ≠ 0, which can
be be obtained iteratively by

|Ψ(n+1)⟩ = e−∆τĤ |Ψ(n)⟩ .
Thus, ground-state expectation ⟨Ô⟩ of a physical observable Ô is given by

⟨Ô⟩ = lim
τ→∞

⟨Ψ(n)| Ô |Ψ(n)⟩
⟨Ψ(n)|Ψ(n)⟩

QMC methods carry out the iteration by Monte Carlo sampling.
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Diffusion Quantum Monte-Carlo for polariton chemistry

The imaginary time Schrodinger equation,

∂

∂τ
ψ(r, τ) =

(
1

2
∇2

r + V (r)

)
ψ(r, τ),

The above equation can be solved via the
Green’s function,
ψ(r, τ) =

∫
dr′ G(r, r′, τ)ψ(r′, 0),

G(r, r′, τ) can be approximated by the
Trotter-Suzuki splitting of the time-evolution
operator,

G(r, r′, τ) = lim
dτ→0

[
GT(r, r

′, dτ)GB/D(r, r
′, dτ)

]Ns

.

where
GT(r, r

′, dτ) = e−
(r−r′)2

2dτ

GB/D(r, r
′, dτ) = e−dτ

V (r)+V (r′)
2 .

Generate initiate configurations

Evaluate the potential energy VTot(r, qc).

Displace walkers by sampling a Gaussian
distribution with a standard deviation

√
dτ

Update VTot(r
′, q′c) with new configurations.

Update trial energy ET

Calculate probabilities Pw =

exp

[
−dτ

(
VTot(r,qc)+VTot(r

′,qc′ )
2

− ET

)]

Compare with random number ξ: a) Kill the
walker if Pw < ξ; b) Retain the walker if

ξ < Pw < 1 ; c) Clone the walker if Pw > 1
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Diffusion Monte-Carlo: examples

In the absence of electron-photon coupling, CCSD
is exact for a two-electron system.

In the presence of electron-photon coupling,
QED-CCSD underestimates the correlations

Our DQMC provides a promising route toward the direct and accurate simulation of simple systems.

BTW: QED-CCSD with VT-QEDHF reference leads to the “same results” as QMC.
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Diffusion Monte-Carlo computation of vibronic transitions in the cavity

As in the case of the ground-state energy itself, with increasing coupling strength, the HF approach
overestimates the cavity effects. The DQMC approach suggests the weakest effects
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Who cares about single-molecule in cavity?
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First-principles argumented model Hamiltonian for many molecules

BOMD simulation
of single molecule

Snapshots FDTD simulation of cavities

• Map each configuration to a reduced model (one/two/three-bands)

• Reduced models for molecular ensemble (multi-band Hubbard U model)

Ĥ =
∑N

ij

∑vivj
αβ tαβ

ij ĉ†iαĉjβ +
∑N

i

∑
α̸=β Uαβ

i n̂iαn̂iβ +∑
ν

[
ωνb

†
νbν +

√
ων
2
(λν ·D) + 1

2
(λν ·D)2

]

Apply QED-HF/CC/AFQMC/GWF to the model Hamiltonian.

Energy/properties
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