


Defects in solids: a playground for all kinds of chemistry

e Catalysis active sites:
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Defects in solids: a playground for all kinds of chemistry

e Catalysis active sites:
o Oxygen vacancies in metal-oxide catalysts promote thermal and photocatalysis
o Single-atom dopants (ie gr-N4 + TM) are at the forefront of electrocatalysis

e Quantum information:
o NV centers in diamond and silicon as sensors and spin qubits
o Carbon dopants in hBN as SPEs for quantum communication

e Clean energy:

o Tuning transport in batteries and semiconductors via defect engineering
o Defects as anchoring sites in fuel cells
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The role of theory in defect chemistry

e Ab-initio calculations can circumvent trial-and-error experiments
o Binding energies, excited states, spin-couplings, dynamics, etc etc
o Insights often inaccessible or difficult to obtain via experiment: direct wavefunction information
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The role of theory in defect chemistry

Ab-initio calculations can circumvent trial-and-error experiments

(@)

(@)

Binding energies, excited states, spin-couplings, dynamics, etc etc
Insights often inaccessible or difficult to obtain via experiment: direct wavefunction information

But can current models always give an accurate picture of defects?

(@)

(@)

(@)

(@)

Relies on periodic boundary conditions, defect is always repeated across unit cells

Defects can be spaced at nano- or microscale, routine DFT unit cells < a few nanometers
Wavefunction methods (MP2, CC) are more trustworthy, but much smaller unit cells required
If a defect is charged (i.e. NV center in diamond), need to throw out diverging terms

The ever-evolving field of quantum embedding

(@)

(@)

Can treat defects with near-exact wavefunction methods, pair to cheaper surroundings
Suffers from same issue of defect repetition in PBC...



A quantum embedding approach without defect repetition

Introducing an “aperiodic fragment” approach for the defect could

Allow the solid’s unit cell used to be only large enough to house the defect -> savings
Eliminate the term removal of “compensating background charges” -> trustworthiness
Assure that defects in different unit cells aren’t artificially interacting -> accuracy
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Allow the solid’s unit cell used to be only large enough to house the defect -> savings
Eliminate the term removal of “compensating background charges” -> trustworthiness
Assure that defects in different unit cells aren’t artificially interacting -> accuracy

(@)

(@)

(@)

e This approach would need to
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Converge to the same properties as the periodic approach in the thermodynamic limit (TDL)
Take into account the relaxation of the environment due to the defect
Have flexibility in ab-initio approaches to tackle a variety of defects
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Aperiodic fragment in frozen mean-field surroundings

e Embedding often uses HF for surroundings: no double counting of E__
o Self-consistency or expansion of correlated fragment fixes lack of correlation later

e Fragment HF energy same form as a molecule’s, but with modified h and E_
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Aperiodic fragment in frozen mean-field surroundings
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Putting things to the test: Fluorographane

e Real material (10.1038/s41565-019-0582-z) and an interesting testing ground
e Substitute a H in graphane with a F, then start breaking the C-F bond

o As bond is stretched, static correlation increases, dynamic correlation of F valence electrons




Total energy (Ep)

Periodic embedding vs aperiodic
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Fluorine displacement along C-F axis (4)
Old, periodic scheme (2x2 supercell)
o 10.1063/5.0084040
Expected behavior of MP2 and
CCSD(T) in strong correlation



Periodic embedding vs aperiodic
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e Old, periodic scheme (2x2 supercell) e Aperiodic approach, same 14-atoms
o 10.1063/5.0084040 e MP2 behaves like HF, CC/DC has
e Expected behavior of MP2 and major issues at 2A but like MP2 after
CCSD(T) in strong correlation o An avoided crossing?



A crossing! Does aperiodic reproduce periodic in the TDL?

—— RHF —— State 3
------- RHF Shifted —— State 4
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Fluorine displacement along C-F axis (4)
Using aperiodic embedding, RHF zips along a
covalent-ionic crossing (follows ionic diabat)



A crossing! Does aperiodic reproduce periodic in the TDL?

Total energy (Ep)

As we take periodic scheme from 2x2 to 6x6,
excited state manifold (and MP2/CC) match!
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What about quantitative agreement in the TDL?

e HF dissociation energy at bond displacements of 2 and 4 A at N atoms
e At large enough fragments/supercells, a linear regime in 1/N begins: exact match
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HF Mulliken F Charge and CASPT2 Dissociation Energies

—®— 16 Atom Supercell —8— 144 Atom Supercell
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For CASPT2, an embedded fragment must be used for periodic too, so N=number
of atoms in fragment
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Conclusions and next steps

e Aperiodic embedding can:
o Give correct ground and excited state PES using a minimal unit cell, while periodic can require
very large supercells to get here
o Converge to the same TDL values of dissociation energies and Mulliken charges as periodic
m Periodic is over 400x more costly for this 2-D system
o  Capture response of the environment in this system by simply expanding the fragment
m HF’s ionic dissociation induces a large dipole, yet TDL properties match fully periodic ones
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e Aperiodic embedding can:
o  Give correct ground and excited state PES using a minimal unit cell, while periodic can require
very large supercells to get here
o Converge to the same TDL values of dissociation energies and Mulliken charges as periodic
m Periodic is over 400x more costly for this 2-D system
o Capture response of the environment in this system by simply expanding the fragment
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e Future steps/works in progress:
o Testing on charged systems and defects in 3-D crystals (is the speedup even greater?)
o Analytic gradients of the fragment HF energy: fast geometry optimizations of defects
o Computing SOCs and NACs: heavy atoms and nonadiabatic dynamics of defects
o Self-consistency between fragment and environment to allow smaller fragments
m  Applying the approach to metals - fragment is an open system
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Workflow

Periodic defect

Periodic HF calculation of
supercell with defect

|

Aperiodic defect

Periodic HF calculation of
pristine unit cell

7N

Calculation of Wannier
functions (WFs)

Calculation of Wannier
functions, electrostatic potential

Build Fock matrix in basis
of defect atoms’ AOs

|

Fragment basis: WFs,
PAOs; Fragment one-
electron h: eq. 1;
E,.. adapted to match
EHFfrag = EHFper

}

Calculation of 3-index
integrals and DF coeffs,
assembly of 4-index
integrals

|

Post-HF treatment

N/

Fragment basis:
environment-proj. AOs, eq.
8; Fragment one-electron
hieq. % E,_  eq. 12

|

Calculation of 3-index
integrals and coefficients
B: eq. 13; SCF, Eygdefect: eq.
11; assembly of 4-index
integrals

|

Post-HF treatment
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Definition of the electrostatic potential and E
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Total energy (Ep)
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