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Defects in solids: a playground for all kinds of chemistry

● Catalysis active sites:
○ Oxygen vacancies in metal-oxide catalysts promote thermal and photocatalysis
○ Single-atom dopants (ie gr-N4 + TM) are at the forefront of electrocatalysis
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● Quantum information:
○ NV centers in diamond and silicon as sensors and spin qubits
○ Carbon dopants in hBN as SPEs for quantum communication

● Clean energy:
○ Tuning transport in batteries and semiconductors via defect engineering
○ Defects as anchoring sites in fuel cells
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The role of theory in defect chemistry

● Ab-initio calculations can circumvent trial-and-error experiments
○ Binding energies, excited states, spin-couplings, dynamics, etc etc
○ Insights often inaccessible or difficult to obtain via experiment: direct wavefunction information
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The role of theory in defect chemistry

● Ab-initio calculations can circumvent trial-and-error experiments
○ Binding energies, excited states, spin-couplings, dynamics, etc etc
○ Insights often inaccessible or difficult to obtain via experiment: direct wavefunction information

● But can current models always give an accurate picture of defects?
○ Relies on periodic boundary conditions, defect is always repeated across unit cells
○ Defects can be spaced at nano- or microscale, routine DFT unit cells < a few nanometers
○ Wavefunction methods (MP2, CC) are more trustworthy, but much smaller unit cells required
○ If a defect is charged (i.e. NV- center in diamond), need to throw out diverging terms

● The ever-evolving field of quantum embedding
○ Can treat defects with near-exact wavefunction methods, pair to cheaper surroundings
○ Suffers from same issue of defect repetition in PBC…



A quantum embedding approach without defect repetition

● Introducing an “aperiodic fragment” approach for the defect could
○ Allow the solid’s unit cell used to be only large enough to house the defect -> savings
○ Eliminate the term removal of “compensating background charges” -> trustworthiness
○ Assure that defects in different unit cells aren’t artificially interacting -> accuracy
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● Introducing an “aperiodic fragment” approach for the defect could
○ Allow the solid’s unit cell used to be only large enough to house the defect -> savings
○ Eliminate the term removal of “compensating background charges” -> trustworthiness
○ Assure that defects in different unit cells aren’t artificially interacting -> accuracy

● This approach would need to
○ Converge to the same properties as the periodic approach in the thermodynamic limit (TDL)
○ Take into account the relaxation of the environment due to the defect
○ Have flexibility in ab-initio approaches to tackle a variety of defects
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● Embedding often uses HF for surroundings: no double counting of Ecorr

○ Self-consistency or expansion of correlated fragment fixes lack of correlation later
● Fragment HF energy same form as a molecule’s, but with modified h and Enuc
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Putting things to the test: Fluorographane

● Real material (10.1038/s41565-019-0582-z) and an interesting testing ground
● Substitute a H in graphane with a F, then start breaking the C-F bond

○ As bond is stretched, static correlation increases, dynamic correlation of F valence electrons



Periodic embedding vs aperiodic

● Old, periodic scheme (2x2 supercell)
○ 10.1063/5.0084040

● Expected behavior of MP2 and 
CCSD(T) in strong correlation



Periodic embedding vs aperiodic

● Old, periodic scheme (2x2 supercell)
○ 10.1063/5.0084040

● Expected behavior of MP2 and 
CCSD(T) in strong correlation

● Aperiodic approach, same 14-atoms
● MP2 behaves like HF, CC/DC has 

major issues at 2Å but like MP2 after
○ An avoided crossing?



A crossing! Does aperiodic reproduce periodic in the TDL?

Using aperiodic embedding, RHF zips along a 
covalent-ionic crossing (follows ionic diabat)



A crossing! Does aperiodic reproduce periodic in the TDL?

As we take periodic scheme from 2x2 to 6x6, 
excited state manifold (and MP2/CC) match!



What about quantitative agreement in the TDL?
● HF dissociation energy at bond displacements of 2 and 4 A at N atoms
● At large enough fragments/supercells, a linear regime in 1/N begins: exact match



HF Mulliken F Charge and CASPT2 Dissociation Energies

For CASPT2, an embedded fragment must be used for periodic too, so N=number 
of atoms in fragment



Conclusions and next steps

● Aperiodic embedding can:
○ Give correct ground and excited state PES using a minimal unit cell, while periodic can require 

very large supercells to get here
○ Converge to the same TDL values of dissociation energies and Mulliken charges as periodic

■ Periodic is over 400x more costly for this 2-D system
○ Capture response of the environment in this system by simply expanding the fragment

■ HF’s ionic dissociation induces a large dipole, yet TDL properties match fully periodic ones
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● Aperiodic embedding can:
○ Give correct ground and excited state PES using a minimal unit cell, while periodic can require 

very large supercells to get here
○ Converge to the same TDL values of dissociation energies and Mulliken charges as periodic

■ Periodic is over 400x more costly for this 2-D system
○ Capture response of the environment in this system by simply expanding the fragment

■ HF’s ionic dissociation induces a large dipole, yet TDL properties match fully periodic ones
● Future steps/works in progress:

○ Testing on charged systems and defects in 3-D crystals (is the speedup even greater?)
○ Analytic gradients of the fragment HF energy: fast geometry optimizations of defects
○ Computing SOCs and NACs: heavy atoms and nonadiabatic dynamics of defects
○ Self-consistency between fragment and environment to allow smaller fragments

■ Applying the approach to metals - fragment is an open system



Thank you! 
Questions?
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Workflow



Definition of the electrostatic potential and Eper
HF




