Advancing Quantum Simulations with Machine Learning and Graph Theory

Maksim Kulichenko Theoretical Division, T-1, Los Alamos National Laboratory

September 4, 2024

LA-UR-24-28802

Northern New Mexico Area

ML to Replace QM The ANI-type Neural Network potential

ML to Replace QM: Large Scale Simulations

Simple models can simulate complex processes when provided with high-quality data.

ML potential trained to ANI-1xnr dataset:

Active Learning via high-T non-equilibrium condensed phase MD snapshots. 26K datapoints (Boxes of up to 150

Applications

atoms) Nanoreactor: MLIP-driven simulations of extreme dynamics

Zhang, S. et al. Nat. Chem. 16, 727–734 (2024)

Carbon solid-phase nucleation simulation

6

Methane combustion

а

200

--- H_2O_2

-× CH₄

0.20

CO CO₂

- Initial conditions: 100 CH₄ and 200 O₂ molecules, 0.1fs timestep
- ANI-1xnr potential correctly produces major products and species profiles
- Reaction rates depend on the reference DFT level of theory

Miller Experiment (Life Formation)

- Initial conditions:16 H_2 , 14 H_2O , 14 CO, 14 NH_3 and 14 CH_4
- 0.25 fs timestep
- Glycine is formed!

ML potentials limitations: no electronic structure information

ML potentials limitations: locality

- B₃₆ has fully delocalized chemical bonds
- Aromatic (like benzene) \rightarrow planar

Non-local electronic effects often dictate structural stability

Wang, et al. Nat Commun 5, 3113 (2014).

ML to Assist QM Semiempirical Quantum Mechanics (SEQM)

Neglect of Diatomic Differential Overlap (NDDO):

- Based on Hartree-Fock formalism
- Overlap matrix is neglected
- 3c- and 4c-2e integrals are neglected
- 2c-2e integrals are approximated by multipoles
- Valence shell electrons only, minimal basis set
- 1c-1e and 1c-2e integrals are replaced by <u>static fitted</u> parameters

- The accuracy is compromised
- ✤ The scaling is reduced from quartic $O(N^4)$ to cubic $O(N^3)$, lower prefactor
- Electronic structure formalism is retained (charges, multiplicity, non-local effects)

SEQM Limitation: Accuracy

Static parameters in Hamiltonian compromise accuracy

Improving accuracy of SEQM: ML + SEQM

Replacement of static parameters in semi-empirical Hamiltonian with dynamically responsive
ML model generates parameter values based on spatial descriptors

ML to Assist QM Semiempirical Quantum Mechanics (SEQM)

PySEQM: PyTorch-Based Semi-Empirical Quantum Mechanics

Capabilities:

- Neglect of Diatomic Differential Overlap models (PM6, PM3, AM1, MNDO)
- Built-in interfaces for ML re-parametrization
- GPU-accelerated simulations
- Multiple parallel simulations via a batch mode
- Forces and errors calculation via PyTorch backpropagation

https://github.com/lanl/PYSEQM.git

G. Zhou, et. al. *PNAS*, 2022, 119, e2120333119 M. Kulichenko et al.J. Chem. Theory Comput. 2023, 19, 11, 3209–3222

ML to Assist QM: Training SEQM to Non-Equilibrium Data Data

ANI-1x training set

- ML+SEQM achieves higher accuracy than pure ML and SEQM
- ML+SEQM needs less training data than pure ML
- In fact, ML+SEQM can't have too much data
 - Training is expensive because of error backpropagation through SCF loop.

N. Lubbers, et. al. *J. Chem. Phys.* 148, 241715 (2018) G. Zhou, et. al. *PNAS*, 119, e2120333119 (2022)

ML to Assist QM: Training SEQM to Reactive Data

Robert Stanton et al. Unpublished

Training data: 140k broken-symmetry open shell singlets and doublets

- 60% Transition1x¹ reaction pathways
- 10% BSE49² bond dissociation paths
- 30% ANI-1x³ non-equilibrium geometries

M. Schreiner et al., Sci Data 2022, 9, 779
V.K. Prasad et al., Sci Data 2021, 8, 300
J.S. Smith et al., Sci Data 2020, 7, 134

ML to Assist QM: Training SEQM to Reactive Data

Graph-based Electronic Structure Theory

Non-overlapping cores Overlapping halos

Graph-based Electronic Structure Theory

- Graph partitioning is adaptive: a new graph is constructed at each MD step or DM optimization step
- Overlap matrix or distances for initialization

Subgraphs are not isolated!

A full (non-local) Coulomb summation is performed when constructing Fock SubMatrices. Subgraphs "feel" each other.

But the eigenvalue problem is solved for a subgraph only.

Linear Scaling Electronic Structure Theory

AMNN et al. *"Graph-based linear scaling electronic structure theory"*, J. Chem. Phys. 144, 234101 (2016)

Density Matrix Optimization of Solvated Gramicidin S

Gramicidin S solvated in water 3605 atoms

(Built via PACKMOL)

CORE: 556 HALO: 218

7 subgraphs

CORE: 443

CORE: 180 HALO: 46

CORE: 639 HALO: 188

CORE: 624 HALO: 178

CORE: 527 HALO: 203

Density Matrix Optimization of solvated Gramicidin S

Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz

3605 atoms

- 10⁻¹ Matrix Element Value

10-3

- 10-5

- 10-11

- 10-9

Oxygen Reduction Reaction

Fundamental cathode reaction in fuel cells/electrochemistry

Rae C. Grove et al. Unpublished

Graph-Based QMD: Oxygen Reduction Reaction Non-locality is properly described in graph-based QMD

64K atoms Trp-cage + ammonium bicarbonate solution Partitioned in 2,048 subgraphs running on 32 CPU nodes

Distributed graph-based shadow QMD for reactive & charge sensitive systems (SCC-DFTB, dt = 0.5 fs)

Negre, Wall, Niklasson, J. Chem. Phys. 158, 074108 (2023), "Graph-based Quantum-response Theory and Shadow Born-Oppenheimer Molecular Dynamics"

Summary

✤ ML-based interatomic potentials:

- + Fast
- + Accurate (in the domain of training data chemical space)
- Ignore (usually) electronic structure (charge, multiplicity, non-local effects)
- Require a lot of training data

SEQM methods:

- + Retain electronic structure formalism (charge, multiplicity, non-local effects)
- ± Faster than *ab initio* but slower than ML
- Compromised accuracy

✤ ML+SEQM:

- + Higher accuracy than just ML or SEQM
- + Require less training data than ML
- Training is more challenging than for pure ML (backpropagation through SCF loop)
 - Special data preparation techniques are needed, e.g. Active Learning

Graph-based QMD

+ Improves scalability of quantum methods

Thank You for Your Attention!

Acknowledgements

LANL T-1	LANL CSS	NVIDIA
Sergei Tretiak	Nick Lubbers Ying Wai Li	Justin Smith Guoqing Zhou
Ben Nebgen		
Anders Niklasson		
Kipton Barros		
Nick Lubbers		
Richard Messerly		
Robert Stanton		
Rae A. C. Grove	Center for Nonlinear Studies	LABORATORY DIRECTED RESEARCH & DEVELOPMENT
Nikita Fedik		

