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𝐸𝑡𝑜𝑡 = σ𝑖
𝐴𝑡𝑜𝑚𝑠𝐸𝑖 

The ANI-type Neural Network potential
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Smith, Isayev, Roitberg, Chem. Sci., 2017, 8, 3192-3203

ML to Replace QM

❖ Molecular representation via local atomic environment descriptors
❖ Energy decomposition into atomic contributions

❖ High speed
❖ High accuracy (when applied within a domain of training data)
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ML to Replace QM: Large Scale Simulations

ML potential trained to ANI-1xnr dataset:

Active Learning via high-T non-equilibrium condensed phase MD snapshots. 26K datapoints (Boxes of up to 150 

atoms) 

Zhang, S. et al. Nat. Chem. 16, 727–734 (2024)

Simple models can simulate complex processes when provided with high-quality data.
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Carbon solid-phase nucleation simulation 

Zhang, S. et al. Nat. Chem. 16, 727–734 (2024)

high (3.52 g cc−1)

medium (2.25 g cc−1)

low (0.50 g cc−1) 

• Initial conditions: 5K 

atoms at different box 

lengths, 0.5 fs timestep

• ANI-1xnr produces the 

correct structure of carbon 

for the respective density
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Methane combustion 

▪ Initial conditions: 100 CH4 and 200 O2 

molecules, 0.1fs timestep

▪ ANI-1xnr potential correctly produces 

major products and species profiles

▪ Reaction rates depend on the 

reference DFT level of theory
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Miller Experiment (Life Formation)

▪ Initial conditions:16 H2, 14 H2O, 

14 CO, 14 NH3 and 14 CH4

▪ 0.25 fs timestep

▪ Glycine is formed!



ML potentials limitations: no electronic structure information

Singlet: 1 eV

Triplet: 0.0 eV

Singlet: 0.5 eV

 

Triplet: 0.0 eV

O2 CH2



ML potentials limitations: locality

Wang, et al. Nat Commun 5, 3113 (2014). 

B36

• B36 has fully delocalized chemical bonds

• Aromatic (like benzene) → planar

❖ Non-local electronic effects often dictate structural stability

Local descriptors!

Delocalized electrons
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Neglect of Diatomic Differential Overlap (NDDO):

• Based on Hartree-Fock formalism

• Overlap matrix is neglected

• 3c- and 4c-2e integrals are neglected

• 2c-2e integrals are approximated by multipoles

• Valence shell electrons only, minimal basis set

• 1c-1e and 1c-2e integrals are replaced by static fitted 

parameters

❖ The accuracy is compromised

❖ The scaling is reduced from quartic O(N4) to cubic O(N3), lower prefactor

❖ Electronic structure formalism is retained (charges, multiplicity, non-local effects)

FC = SCE

Fock matrix

MO coefficients

Overlap matrix

(neglected)

Eigenvalues (MO energies)

Semiempirical Quantum Mechanics (SEQM)
ML to Assist QM
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SEQM Limitation: Accuracy

❖ Static parameters in Hamiltonian compromise accuracy
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G. Zhou, et. al. PNAS, 119, e2120333119 (2022)

❖Replacement of static parameters in semi-empirical Hamiltonian with dynamically responsive

❖ML model generates parameter values based on spatial descriptors

Improving accuracy of SEQM: ML + SEQM

ML-generated 

parameters
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Static parameter

Atomic environment responsive

Upp: p-AO one-electron one-center integral for O atom

r (O-H) Å
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PySEQM: PyTorch-Based Semi-Empirical Quantum Mechanics

Capabilities:

▪ Neglect of Diatomic Differential Overlap models (PM6, PM3, AM1, MNDO)

▪ Built-in interfaces for ML re-parametrization

▪ GPU-accelerated simulations

▪ Multiple parallel simulations via a batch mode

▪ Forces and errors calculation via PyTorch backpropagation

Semiempirical Quantum Mechanics (SEQM)
ML to Assist QM

https://github.com/lanl/PYSEQM.git

G. Zhou, et. al. PNAS, 2022, 119, e2120333119

M. Kulichenko et al.J. Chem. Theory Comput. 2023, 19, 11, 3209–3222
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Method SEQM (PM3) ML (HIPNN) ML+SEQM

RMSE 

[kcal/mol]/atom

0.6 1.1 0.2

RMSE of Atomization energies

Test set: 250 Tripeptides (DFT reference data)

Trained on 600K 

structures

Trained on 60K 

structures

❖ ML+SEQM achieves higher accuracy than pure ML and SEQM

❖ ML+SEQM needs less training data than pure ML

❖ In fact, ML+SEQM can’t have too much data

• Training is expensive because of error backpropagation through SCF loop.

ML to Assist QM: Training SEQM to Non-Equilibrium Data Data

N. Lubbers, et. al. J. Chem. Phys. 148, 241715 (2018)

G. Zhou, et. al. PNAS, 119, e2120333119 (2022)

ANI-1x training set



ML to Assist QM: Training SEQM to Reactive Data

Training data: 140k broken-symmetry open shell singlets and doublets

▪ 60% Transition1x1 – reaction pathways 

▪ 10% BSE492 – bond dissociation paths

▪ 30% ANI-1x3 – non-equilibrium geometries

1) M. Schreiner et al., Sci Data 2022, 9, 779

2) V.K. Prasad et al., Sci Data 2021, 8, 300

3) J.S. Smith et al., Sci Data 2020, 7, 134

Robert Stanton et al. Unpublished



Held-out Test Set (14k, reactive)
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Drug Bank subset (13k, real drug molecules)

ML to Assist QM: Training SEQM to Reactive Data

Robert Stanton et al. Unpublished



Graph-based Electronic Structure Theory

Initial Density Matrix

Updated Density Matrix

Reconstructed from Subgraphs

Initial Density 

SubMatrices Updated Density 

SubMatrices

Non-overlapping cores

Overlapping halos

C. F. A. Negre et al. J. Chem. Phys. 21 February 2023; 158 (7): 074108



Graph-based Electronic Structure Theory

Subgraphs are not isolated!
A full (non-local) Coulomb summation is performed when constructing Fock SubMatrices.

Subgraphs “feel” each other.
But the eigenvalue problem is solved for a subgraph only.

▪ Graph partitioning is adaptive: a 
new graph is constructed at each 
MD step or DM optimization step

▪ Overlap matrix or distances for 
initialization



Graph Theory

AMNN et al. “Graph-based linear scaling electronic structure theory”, 

J. Chem. Phys. 144, 234101 (2016)

a) Simple error control

b)  Efficient parallelism on 

distributed memory

c)  Small overhead

Divide and ConquerSparse Matrix Algebra

Linear Scaling Electronic Structure Theory



CORE: 527 
HALO: 203

CORE: 443 
HALO: 165

CORE: 636
HALO: 183

CORE: 624 
HALO: 178

CORE: 639 
HALO: 188

CORE: 556 
HALO: 218

CORE: 180
HALO: 46

Gramicidin S solvated in water
3605 atoms

7 subgraphs

Density Matrix Optimization of Solvated 
Gramicidin S

(Built via PACKMOL)



3605 atoms

1 part:

Etot: -378831.186 eV

11min 37s 

7 parts:

Etot: -378831.191 eV

2min 11s

ΔEtot = 0.005 eV

Density Matrix Optimization of solvated 
Gramicidin S

Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz



Cl

Na

O

N

C

H

{Cl           Na           O           N           C} H

Density Matrix Comparison

Whole System vs Subgraphs



+100,000 atom
water system
SCC-DFTB
(LATTE)
Negre et al.

~1 minute/QMD step
on 16 nodes

SCF-free, parallel, 
graph-based, O(N), 
XL-BOMD

Subgraph

Graph Theory



Oxygen Reduction Reaction

Fundamental cathode reaction in fuel cells/electrochemistry
Rae C. Grove et al. Unpublished





















>1,000 atom QDM
16 graph partitions

N-doped Graphene + Water

Rae C. Grove et al. Unpublished

Graph-Based QMD: Oxygen Reduction Reaction 

Non-locality is properly described in graph-based QMD

DFTB (LANL 31 parameters)

10 ps total, 0.1 fs timesteps

~30 hours

XL-BOMD



Distributed graph-based shadow QMD

for reactive & charge sensitive systems

(SCC-DFTB, dt = 0.5 fs) 

64K atoms Trp-cage 
+ ammonium bicarbonate solution
Partitioned in 2,048 subgraphs

running on 32 CPU nodes 

Negre, Wall, Niklasson, J. Chem. Phys. 158, 074108 (2023), “Graph-based 

Quantum-response Theory and Shadow Born-Oppenheimer Molecular Dynamics”
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Summary

❖ ML-based interatomic potentials:

+ Fast

+ Accurate (in the domain of training data chemical space)

- Ignore (usually) electronic structure (charge, multiplicity, non-local effects)

- Require a lot of training data

❖ SEQM methods:

+ Retain electronic structure formalism (charge, multiplicity, non-local effects)

± Faster than ab initio but slower than ML

- Compromised accuracy

❖ ML+SEQM:

+ Higher accuracy than just ML or SEQM

+ Require less training data than ML

- Training is more challenging than for pure ML (backpropagation through SCF loop)

- Special data preparation techniques are needed, e.g. Active Learning

❖ Graph-based QMD

+ Improves scalability of quantum methods



Thank You for Your Attention!
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Ĥψ = Eψ

Ĥψ = Eψ

Ĥψ = Eψ

Ĥψ = Eψ

Ĥψ = Eψ

Ĥψ = Eψ

ML-Assisted Hamiltonian

Global

Density Matrix

Density 

Matrix

Linear Scaling via Graphs
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