

Constructing PIP potential energy surfaces for semiclassical vibrational spectroscopy calculations

Riccardo Conte

VISTA, June 26th, 2024

Acknowledgments

Main Collaborators (SC spectroscopy)

Michele Ceotto (Milan Univ.) Chiara Aieta (Milan Univ. and Princeton Univ.) Marco Cazzaniga (Milan Univ.) Giacomo Botti (Milan Univ.) Cecilia Lanzi (Milan Univ.) Giacomo Mandelli (Milan Univ.) Davide Moscato (Milan Univ.)

UNIVERSITÀ DEGLI STUDI DI MILANO

Main collaborators (PIP PESs)

Joel M. Bowman (Emory Univ.) Paul L. Houston (Cornell Univ. and Georgia Tech) Apurba Nandi (Univ. of Luxembourg) Chen Qu (NIST) Qi Yu (Fudan Univ.) Priyanka Pandey (Emory Univ.)

Talk Outline

- 1. Building potential energy surfaces with permutationally invariant polynomials (PIPs)
- Theory of (PIPs): Fragmentation; Many-body Approach; Pruning
- Accuracy and performance comparison to other ML methods
- Improving the level of a PIP $\ensuremath{\mathsf{PES}}$

Talk Outline

- 1. Building potential energy surfaces with permutationally invariant polynomials (PIPs)
- Theory of (PIPs): Fragmentation; Many-body Approach; Pruning
- Accuracy and performance comparison to other ML methods
- Improving the level of a PIP PES

2. Semiclassical (SC) vibrational Spectroscopy

- Theory and advances in SC vibrational spectroscopy
 - Accuracy and importance of SC spetroscopy
 - A new time-averaged SC IR spectroscopy approach

Generic polynomial expression for the potential energy

$$V = \sum_{a+b+c+d+e+f \le N} C_{abcdef} \left[y_{12}^{a} y_{13}^{b} y_{14}^{c} y_{23}^{d} y_{24}^{e} y_{34}^{f} \right]; y_{ij} = \exp(-r_{ij} / \lambda)$$

 C_{abcdef} Linear coefficients to be fitted to *ab initio* data

N is maximum polynomial order; λ is usually chosen in the range 2-3 Bohr

No permutation invariance!

Generic polynomial expression for the potential energy

$$V = \sum_{a+b+c+d+e+f \le N} C_{abcdef} \left[y_{12}^{a} y_{13}^{b} y_{14}^{c} y_{23}^{d} y_{24}^{e} y_{34}^{f} \right]; y_{ij} = \exp(-r_{ij} / \lambda)$$

 C_{abcdef} Linear coefficients to be fitted to *ab initio* data

N is maximum polynomial order; λ is usually chosen in the range 2-3 Bohr

No permutation invariance!

PIP expression for the potential energy

$$V = \sum_{n_1 + \dots + n_6 \le N} \mathbf{C}_{\mathbf{n}} \hat{S} \{ y_1^{n_1} y_2^{n_2} y_3^{n_3} y_4^{n_4} y_5^{n_5} y_6^{n_6} \}$$

$$V(r_1, \dots, r_6) = \sum_{n_1, \dots, n_6} C_{n_1 \dots n_6} y_1^{n_1} y_6^{n_6} (y_2^{n_2} y_3^{n_3} y_4^{n_4} y_5^{n_5} + y_2^{n_5} y_3^{n_4} y_4^{n_3} y_5^{n_2})$$

PIP expression for the potential energy

$$V = \sum_{n_1 + \dots + n_6 \le N} D_{\mathbf{n}} \hat{S} \{ y_1^{n_1} y_2^{n_2} y_3^{n_3} y_4^{n_4} y_5^{n_5} y_6^{n_6} \} \xrightarrow{\text{H1} \text{H2}}_{\mathbf{Y}_1}$$

С

r2

r4

ľ6

ľ1

r2

ľз

r4

ľ5

υ

0

0

r3

ľ5

r6

An easy example: Formaldehyde

Some of the PIPs

$$p(0) = 1$$

$$p(1) = \exp(-r_1/a)$$

$$p(2) = \exp(-r_2/a) \exp(-r_4/a)$$

$$p(3) = \exp(-r_3/a) \exp(-r_5/a)$$

$$p(4) = \exp(-r_6/a)$$

$$p(5) = \exp(-r_2/a) + \exp(-r_4/a)$$

$$p(6) = \exp(-r_3/a) + \exp(-r_5/a)$$

Some of the PIPs

No. PIPs vs Max Pol Order

p(0)	= 1
p(1)	$=\exp(-r_1/a)$
p(2)	$= \exp(-r_2/a)^* \exp(-r_4/a)$

$$p(3) = \exp(-r_3/a)^* \exp(-r_5/a)$$

$$p(4) = \exp(-r_6/a) p(5) = \exp(-r_2/a) + \exp(-r_4/a)$$

$$p(6) = \exp(-r_3/a) + \exp(-r_5/a)$$

max. polynomial order	2	3	4	5	6	7	8	9
No. polynomials	18	50	120	256	502	918	1589	2625

Software PESPIP: P.L. Houston, C. Qu, Q. Yu, R. Conte, A. Nandi, J.K. Li, J.M. Bowman *J. Chem. Phys.* **158**, 044109 (2023); https://doi.org/10.1063/5.0134442

PIP notation is of type $A_I B_m C_n \dots$, where A, B, C, \dots are atom types, and I, m, n indicates the permutation order for the corresponding atom.

Number of PIPs depending on molecule permutational symmetry and maximum polynomial order

	5	6	7	8
A ₂ B	34	50	70	95
A ₃ B	103	196	348	590
ABCD	462	924	1716	3003
A ₃ B ₂	364	889	2022	4343
A ₂ B ₂ C	904	2304	5416	11910
ABCDE	3003	8008	19448	43758

No. polys increases rapidly with number of atoms

No. polys decreases if symmetry is higher, but polys are slower to evaluate

A PES for glycine (A₅B₂C₂D)

- The dataset should be designed according to the foreseen applications. Quantum simulations require sampling of high energies.
- For glycine about 70,000 *ab initio* energies and gradients have been calculated at DFT/B3LYP/aVDZ level and fitted by means of 22,250 PIPs (fit order 4)

R. Conte, P.L. Houston, C. Qu, J. Li, and J.M. Bowman *J. Chem. Phys.* **153**, 244301 (2020)

60 0 00

40 000

50 0 00

A PES for glycine

Electronic energies (kcal/mol)									
	Se S		، ۱۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ ۱۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ -	بغيوهم ا		مربع مربع	• 🛴	لمربق المراجع ا مراجع المراجع ال	
	Conf 1	Conf 2	Conf 3	Conf 4	Conf 5	Conf 6	Conf 7	Conf 8	
PES	0.00	0.59	1.65	1.29	2.70	4.92	5.84	6.22	
B3LYP	0.00	0.58	1.64	1.27	2.61	4.91	5.84	6.25	
CCSD (T)	0.00	0.68	1.73	1.23	2.62	4.80	5.89	6.06	

- Harmonic frequencies: MAE ~ 6 cm⁻¹
- 8 conformers and 15 saddle points identified
- Diffusion Monte Carlo zero-point energy simulations
- The 8 conformers can be group into 4 pairs of asymmetric double wells

R. Conte, P.L. Houston, C. Qu, J. Li, and J.M. Bowman J. Chem. Phys. **153**, 244301 (2020).

Accuracy and efficiency of a PIP PES

- Comparison of accuracy and speed between several ethanol PES
- 14,752 PIPs (fit order 4)
 - Accuracy comparison

 cpu time comparison for 20,000 energy and 20,000 force calls. Training size needed for eRMSE = 0.1 kcal/mol

	Training Size	cpu Time (s)
pKREG	25,000	227
KRR-CM	50,000	508
GAP- SOAP	2,500	3611
s-GDML	1,000	25
ANI	50,000	26
Physnet	50,000	300
PIP	25,000	2.3

P.L. Houston, C.Qu, A. Nandi, R. Conte, Q. Yu, J.M. Bowman J. Chem. Phys. 156 044120 (2022)

The fragmentation technique

- identify atoms which are unlikely to permute
- divide the molecule into overlapping subsystems
- eliminate repeated polynomials

N-methyl acetamide

The fragmentation technique

- identify atoms which are unlikely to permute
- divide the molecule into overlapping subsystems

N-methyl acetamide

- eliminate repeated polynomials

Training dataset made of 3000 energies and 3000 gradients (DFT-B3LYP/cc-pVDZ) Coefficients are linear, so least squares fitting is employed

Fit Order	3	3	3
No. Frags	1	2	3
RMS (energy)*	26.8	34.3	148.9
RMS (gradient)**	54.7	67.4	171.8
Time***	6.611	2.450	0.830

* cm⁻¹; **cm⁻¹/Bohr; *** s, evaluation of 3000 energies and gradients on a 2.7 GHz cpu

R. Conte, C. Qu, P.L. Houston, J.M. Bowman J. Chem. Theory Comput. 16, 3264 (2020)

Some of the polynomials are not returning the correct long-range vanishing 2-body interaction

Some of the polynomials are not returning the correct long-range vanishing 2-body interaction

Those polynomials are eliminated from the fitting basis set. Accuracy maintained, smaller training dataset

q-AQUA, MB-pol, q-AQUA-pol, MB-pol(2023) are all very accurate PIP potentials for water.

Q.Yu, C. Qu, P.L. Houston, R. Conte, A. Nandi, J.M. Bowman J. Phys. Chem. Lett. 13, 5068 (2022)

Q.Yu, C. Qu, P.L. Houston, R. Conte, A. Nandi, J.M. Bowman J. Chem. Theory Comput. 19, 3446 (2023)

Improving the Level of the PES

It is possible to "correct" a low level (LL) PES by fitting a difference PES based on a high level, coupled cluster (CC) training set

$$V_{LL \to CC} = V_{LL} + \Delta V_{CC-LL}$$

 Δ - machine learning technique. About 6000 energies and gradients at DFT-B3LYP/cc-pVDZ level for N-methyl acetamide (V_{LL}). About 4700 energies at CCSD(T)/aug-cc-pVDZ for the Δ surface.

A. Nandi, C. Qu, P.L. Houston, R. Conte, J.M. Bowman J. Chem. Phys. 154, 051102 (2021)

A pair of recent applications of PIP PESs

P.L. Houston, C. Qu, Q. Yu, P. Pandey, **R. Conte**, A. Nandi, J.M. Bowman, S.G. Kukolich *J. Chem. Theory Comput.* **30**, 3008 (2024).

Semiclassical spectroscopy

Power Spectra from Fourier transform of a survival amplitude

$$I(E) = \frac{1}{\pi\hbar} \operatorname{Re} \int_0^{+\infty} dt \, e^{iEt/\hbar} \left\langle \Psi | \Psi(t) \right\rangle \qquad |\Psi(t)\rangle = e^{-i\hat{H}t/\hbar} |\Psi\rangle$$

1

Semiclassical vibrational spectroscopy

Semiclassical vibrational spectroscopy

Application to small molecules through Kaledin and Miller's time average

$$I(E) = \left(\frac{1}{2\pi\hbar}\right)^{N_{vib}} \int \int d\mathbf{p}_0 d\mathbf{q}_0 \frac{1}{2\pi\hbar T} \left| \int_0^T dt \, e^{i[S_t(\mathbf{p}_0, \mathbf{q}_0) + \phi_t(\mathbf{p}_0, \mathbf{q}_0) + Et]/\hbar} \langle \Psi | \mathbf{p}_t, \mathbf{q}_t \rangle \right|^2$$

Is it possibile to perform SC spectroscopy on complex or larger systems?

PES not always available

Need to collect a sensible spectroscopic signal

Why performing SC spectroscopy instead of classical calculations?

Is it possible to calculate SC IR spectra?

Semiclassical spectroscopy of larger systems

M. Ceotto, S. Atahan, G. F. Tantardini, and A. Aspuru-Guzik J. Chem. Phys. 130, 234113 (2009).

Semiclassical spectroscopy of larger systems

1. Single trajectory simulations ("on-the-fly" calculations) (MC SCIVR)

1A) Classical Trajectories with Tailored Energy

1B) Tailored Choice of Reference State

$$|\Psi\rangle = \sum_{i=1}^{N_{st}} \prod_{j=i}^{N_{vib}} \varepsilon_i(j) |p_{eq,j}^{(i)}, q_{eq,j}^{(i)}\rangle$$

2. Projection on subspaces (sensible signals even from large systems) (DC SCIVR)

The semiclassical partial spectra are obtained from subspace-projected quantities, while the dynamics is full dimensional

(p,q)

(E)

$$\widetilde{I}(E) = \left(\frac{1}{2\pi\hbar}\right)^{M} \int \int d\widetilde{\mathbf{p}}_{0} d\widetilde{\mathbf{q}}_{0} \frac{1}{2\pi\hbar T} \left| \int_{0}^{T} e^{\frac{i}{\hbar} \left[\tilde{S}_{t}(\widetilde{\mathbf{p}}_{0}, \widetilde{\mathbf{q}}_{0}) + Et + \widetilde{\phi}_{t} \right]} \left\langle \tilde{\mathbf{\Psi}} \left| \widetilde{\mathbf{p}}_{t}, \widetilde{\mathbf{q}}_{t} \right\rangle dt \right|^{2}$$

M. Ceotto, G. Di Liberto, and R. Conte Phys. Rev. Lett. 119, 010401 (2017).

Semiclassical spectroscopy of larger systems

1. Single trajectory simulations ("on-the-fly" calculations) (MC SCIVR)

1A) Classical Trajectories with Tailored Energy

1B) Tailored Choice of Reference State

$$|\Psi\rangle = \sum_{i=1}^{N_{st}} \prod_{j=i}^{N_{vib}} \varepsilon_i(j) |p_{eq,j}^{(i)}, q_{eq,j}^{(i)}\rangle$$

2. Projection on subspaces (sensible signals even from large systems) (DC SCIVR)

The semiclassical partial spectra are obtained from subspace-projected quantities, while the dynamics is full dimensional $+\tau$

3. Adiabatic Switching (increase of precision and accuracy) (AS SCIVR)

M-dimensional subspace

I(E)

(p,q)

Preparing initial conditions upon switching on slowly the real Hamiltonian allows for full dimensional calculations of larger systems and better accuracy of results.

M. Ceotto, S. Atahan, G. F. Tantardini, and A. Aspuru-Guzik *J. Chem. Phys.* 130, 234113 (2009).
M. Ceotto, G. Di Liberto, and R. Conte *Phys. Rev. Lett.* 119, 010401 (2017).
R. Conte, L. Parma, C. Aieta, A. Rognoni, and M. Ceotto *J. Chem. Phys.* 151, 214107 (2019).

Is semiclassical spectroscopy accurate?

Study of the vibrational frequencies of ethanol on a CCSD(T) analytical PES

Analytical surface at CCSD(T)-F12a/aug-cc-pVDZ level of theory constructed via Δ - machine learning starting from a PES at DFT level of theory.

	VCI (DMC)	AS SCIVR	EXPT		VCI	AS SCIVR	EXPT
ZPE	(17321)	17298	-	CH₃-adef"	1459	1456	1460
CO-str	1101	1088	1090	CH ₂ -sdef	1489	1481	1500
CH ₂ -rck	1160	1148	1166	CH ₂ -sstr	2811	2881	2888
COH-bnd	1251	1242	1241	CH ₂ -astr	2884	2888	2902
CH ₂ -twst	1276	1271	1275	CH₃-sstr	2937	2933	2922
CH ₃ -sdef	1370	1363	1367	CH₃-astr"	2977	2983	2987
CH ₂ -wag	1426	1420	1430	CH₃-astr'	2981	2986	2992
CH₃-adef'	1443	1440	1455	OH-str	3672	3676	3676
				MAE	13	7	-

AS SCIVR detects Fermi resonances and the zero point energy accurately

A. Nandi, **R. Conte**, C. Qu, P.L. Houston, Q. Yu, and J.M. Bowman *J. Chem. Theory Comput.* **18**, 5527-5538 (2022). **R. Conte**, A. Nandi. C. Qu, Q. Yu, P.L. Houston, and J.M. Bowman *J. Phys. Chem. A* **126**, 7709-7718 (2022).

The importance of a quantum approach

F. Gabas, G. Di Liberto, R. Conte, M. Ceotto Chem. Sci. 9, 7894 (2018)

The importance of a quantum approach

F. Gabas, G. Di Liberto, R. Conte, M. Ceotto Chem. Sci. 9, 7894 (2018)

The importance of a quantum approach

Quantum interference effects between states just below and just above the rotational barrier of the NH₃. More on comparisons between semiclassical and classical calculations in **R.Conte** et al. *Theor. Chem. Acc.* 142, 53 (2023).

F. Gabas, G. Di Liberto, R. Conte, M. Ceotto Chem. Sci. 9, 7894 (2018)

SC spectroscopy of solvated species

DC SCIVR calculations at QM/MM level are able to reproduce experimental degeneracy of C=O and C=C stretches of thymidine solvated by water.

D. Moscato, G. Mandelli, M. Bondanza, F. Lipparini, **R. Conte**, B. Mennucci, M. Ceotto *J. Am. Chem. Soc.* **146**, 8179 (2024).

Study of water cluster solvation employing a manybody PIP PES.

The central water molecule is spectroscopically solvated when sorrounded by 20 water molecules

A. Rognoni, R. Conte, M. Ceotto Chem. Sci. 12, 2060 (2021).

SC IR spectra can be calculated starting from power spectra and by means of a state-to-state IR expression, but need calculation of SC eigenfunctions or decomposition of the IR spectrum in terms of several SC power spectra

M. Micciarelli, J. Suarez, R. Conte, M. Ceotto J. Chem. Phys. 149, 064115 (2018).
M. Micciarelli, F. Gabas, R. Conte, M. Ceotto J. Chem. Phys. 150, 184113 (2019).

SC IR spectra can be calculated starting from power spectra and by means of a state-to-state IR expression, but need calculation of SC eigenfunctions or decomposition of the IR spectrum in terms of several SC power spectra

M. Micciarelli, J. Suarez, R. Conte, M. Ceotto J. Chem. Phys. 149, 064115 (2018).
M. Micciarelli, F. Gabas, R. Conte, M. Ceotto J. Chem. Phys. 150, 184113 (2019).

It is possible to work out a time averaged formula also for absorption spectra

 $\alpha(\omega,T) = \omega(1 - e^{-\beta\hbar\omega})\sigma(\omega,T)$ IR SPECTRUM (relative intensities)

$$\sigma(\omega,T) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dt \, e^{-i\omega t} C_{\mu\mu}(t,T) \qquad \text{Absorption lineshape}$$

$$C_{\mu\mu}(t,T) = \langle \hat{\mu}(0)\hat{\mu}(t)\rangle = \text{Tr}\left[\hat{B}(\beta)\,\hat{\mu}\,e^{i\hat{H}t/\hbar}\,\hat{\mu}\,e^{-i\hat{H}t/\hbar}\right]$$

 $\hat{B}(eta)$ is the Boltzmann operator and $~eta=1/k_BT$

$$\begin{split} C_{\mu\mu}(t,T) &= \langle \hat{\mu}(0)\hat{\mu}(t) \rangle = \mathrm{Tr} \left[\hat{B}(\beta) \ \hat{\mu} \ e^{i\hat{H}t/\hbar} \ \hat{\mu} \ e^{-i\hat{H}t/\hbar} \right] \\ \text{Splitting of Boltzmann operator} & \text{Cyclic permutation rule} \\ C_{\mu\mu}(t,T) &= \mathrm{Tr} \left[\hat{B}(\beta/2) \ \hat{\mu} \ e^{i\hat{H}t/\hbar} \ \hat{\mu} \ \hat{B}(\beta/2) \ e^{-i\hat{H}t/\hbar} \right] \\ \text{Herman-Kluk propagator} & \text{Time average} \\ \sigma(\omega,T) &= \frac{(2\pi\hbar)^{-2N_{\nu}}}{2\pi T_s} \iint d\mathbf{p}_0 d\mathbf{Q}_0 \iint d\mathbf{p}'_0 d\mathbf{Q}'_0 \\ & \times \left| \int_0^{T_s} dt \ e^{i[S_t(\mathbf{p}'_0,\mathbf{Q}'_0)-S_t(\mathbf{p}_0,\mathbf{Q}_0)-\hbar\omega t+\phi'(t)-\phi(t)]/\hbar} \langle \mathbf{p}_t \mathbf{Q}_t | \hat{\mu} \hat{B}(\beta/2) | \mathbf{p}'_t \mathbf{Q}'_t \rangle \end{split}$$

2

UNIVERSITÀ DEGLI STUDI DI MILANO

$$\begin{aligned} \sigma(\omega,T) &= \frac{(2\pi\hbar)^{-2N_{\nu}}}{2\pi T_s} \iint d\boldsymbol{p}_0 d\boldsymbol{Q}_0 \iint d\boldsymbol{p}'_0 d\boldsymbol{Q}'_0 \\ &\times \left| \int_0^{T_s} dt \, e^{i \left[S_t(\boldsymbol{p}'_0,\boldsymbol{Q}'_0) - S_t(\boldsymbol{p}_0,\boldsymbol{Q}_0) - \hbar\omega t + \phi'(t) - \phi(t) \right]/\hbar} \, \langle \boldsymbol{p}_t \boldsymbol{Q}_t | \hat{\mu} \hat{B}(\beta/2) | \boldsymbol{p}'_t \boldsymbol{Q}'_t \rangle \right|^2 \end{aligned}$$

Low temperature limit $(T \to 0 \quad \beta \to +\infty)$

$$\begin{split} \hat{B}(\beta) &= \frac{e^{-\beta \hat{H}}}{Z} \qquad \qquad Z \approx e^{-\beta E_0} \qquad \qquad \hat{B}(\beta) \approx |\Psi_0\rangle \langle \Psi_0| \\ &\quad \langle \boldsymbol{p}_t \boldsymbol{Q}_t | \hat{\mu} \hat{B}(\beta/2) | \boldsymbol{p}_t' \boldsymbol{Q}_t' \rangle = \langle \boldsymbol{p}_t \boldsymbol{Q}_t | \hat{\mu} | \Psi_0 \rangle \langle \Psi_0 | \boldsymbol{p}_t' \boldsymbol{Q}_t' \rangle \end{split}$$

 $|\Psi_0
angle$ is approximated to the ground state of a harmonic oscillator

Dipole is linearized
$$\mu(q) - \mu(q_{eq}) \simeq \sum_{j=1}^{N_{\nu}} \frac{\partial \mu}{\partial q_j} \Big|_{q_{eq}} (q_j - q_{eq,j})$$

Comparison between SC power spectrum and SC IR spectrum of CO2

Summary and Perspectives

PIP PESs are highly accurate and fast to evaluate. Developed up to \sim 40 atoms

Improving quality of PIP fitting basis set to Build PIP PESs for larger and larger systems

SC vibrational spectroscopy is accurate and able to deal with large systems

Interface time-averaged SC IR spectroscopy with techinques developed for power spectra and perform calculations at finite temperature

Thank you for your attention!

