

VISTA seminar, June 12, 2024

Coupled Quantum Dynamics of Electrons and Protons in Heterogeneous Environments

Yosuke Kanai

Dept. Chemistry Dept. Physics and Astronomy

University of North Carolina at Chapel Hill

First-Principles Method Development for Condensed Matter

Real-time time-dependent density functional theory

for non-equilibrium electron dynamics

Many-body Green's function theory

for electronic excitation properties

Phenomena of Current Interest

Electronic Stopping

Excitation dynamics under proton irradiation and beyond

Quantum Dynamics of Electrons and Protons Elucidating the mechanism for CO₂ conversion

Novel Materials and Dynamics

Application of first-principles method to "explore" interesting materials and dynamic phenomena

Kanai Group @ UNC

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Dr. Jianhang Xu Dr. Chris Shepard Dr. Ruiyi Zhou Sampreeti Bhattacharya John Bost Tom Carney Nicolas Boyer Kiichi Ogata

Theory Challenges in DOE Hub: CHASE

Development of CO₂-catalyst functionalized semiconductor photoelectrodes

How does surface adsorption impact H⁺/e⁻ transfer steps?

Complex heterogeneous environments need to be modeled.

To what extent is the interfacial excited e⁻ transfer coupled with H⁺ addition at an interface?

Coupled quantum dynamics of protons and electrons need to be considered.

Multicomponent DFT

$$E[\rho^{\mathrm{e}}, \rho^{\mathrm{p}}] = E_{\mathrm{ref}}[\rho^{\mathrm{e}}, \rho^{\mathrm{p}}] + E_{XC}^{e}[\rho^{\mathrm{e}}] + E_{XC}^{p}[\rho^{\mathrm{p}}] + E_{epc}[\rho^{\mathrm{e}}, \rho^{\mathrm{p}}]$$

"Non-Born–Oppenheimer Density Functional Theory of Molecular Systems"
J. F. Capitani, R. F. Nalewajski, and R. G. Parr, J. Chem. Phys. 76, 568 (1982)
"Multicomponent Density-Functional Theory for Electrons and Nuclei"
T. Kreibich and E. K. U. Gross, Phys. Rev. Lett. 86, 2984 (2001)

Nuclear Electronic Orbital (NEO) method

F. Pavosevic, T. Culpitt, S. Hammes-Schiffer, Chem. Rev. 120, 4222 (2020)

NEO to KS-DFT for periodic systems

J. Xu, R. Zhou, Z. Tao, C. Malbon, V. Blum, S. Hammes-Schiffer, Y. Kanai, J. Chem. Phys. 156, 224111 (2022)

$$\psi_{i,\mathbf{k}}^{e}(\mathbf{r}^{e}) = \sum_{\mu} c_{i\mu,\mathbf{k}} \sum_{N} e^{i\mathbf{k}\cdot\mathbf{T}(\mathbf{N})} \phi_{\mu}^{e:NAO/GTO} \left(\mathbf{r}^{e} - \mathbf{R}_{\mu} + \mathbf{T}(\mathbf{N})\right)$$
$$\psi_{i}^{p}(\mathbf{r}^{p}) = \sum_{m} c_{im} \sum_{N} \phi_{m}^{p:GTO} \left(\mathbf{r}^{p} - \mathbf{R}_{m} + \mathbf{T}(\mathbf{N})\right)$$
Atom-ce

Atom-centered basis functions

KS Hamiltonian in Multicomponent DFT

$$\hat{H}_{KS}^{e} = -\frac{1}{2}\nabla_{e}^{2} + v_{ext}(\mathbf{r}^{e}) + v_{es}^{e}(\mathbf{r}^{e}) - v_{es}^{p}(\mathbf{r}^{e}) + \frac{\delta E_{XC}^{e}[\rho^{e}]}{\delta\rho^{e}} + \frac{\delta E_{epc}[\rho^{e},\rho^{p}]}{\delta\rho^{e}}$$
$$\hat{H}_{KS}^{p} = -\frac{1}{2M^{p}}\nabla_{p}^{2} - v_{ext}(\mathbf{r}^{p}) - v_{es}^{e}(\mathbf{r}^{p}) + v_{es}^{p}(\mathbf{r}^{p}) + \frac{\delta E_{XC}^{p}[\rho^{p}]}{\delta\rho^{p}} + \frac{\delta E_{epc}[\rho^{e},\rho^{p}]}{\delta\rho^{p}}$$

Electron-Proton Correlation

Multicomponent extensions of **Colle–Salvetti formalism** have been developed. The simplest form is the local density approximation (LDA)

Y. Yang, et al., J. Chem. Phys. 147, 114113 (2017)

simulation package

$$E_{epc}[\rho^{e}, \rho^{p}] \approx E_{epc17-2} \left[\rho^{e}, \rho^{p}\right] = -\int \frac{\rho^{e}(\mathbf{r})\rho^{p}(\mathbf{r})}{a + b\rho^{e}(\mathbf{r})^{\frac{1}{2}}\rho^{p}(\mathbf{r})^{\frac{1}{2}} + c\rho^{e}(\mathbf{r})\rho^{p}(\mathbf{r})} d\mathbf{r}$$

Proof-of-Principle Demonstration

Hydrogen Boride 1D sheet : B-H-B 3-center-2-electron bonds

Y. Jiao, et al. Angewandte Chemie, 55, 35 (2016)

DFT NEO-DFT w/o epc NEO-DFT w/ epc

Dynamics : Lagrangian for our NEO DFT-KS System

$$L^{NEO}(t) = \int d\mathbf{r}^e \int d\mathbf{k} \sum_j \left[\psi_{j\mathbf{k}}^e(\mathbf{r}^e, t) \right]^* \left[i \frac{\partial}{\partial t} + \frac{1}{2m^e} \nabla_{\mathbf{r}^e}^2 \right] \psi_{j\mathbf{k}}^e(\mathbf{r}^e, t) - \frac{1}{2} \iint d\mathbf{r}^e \, d\mathbf{r}^{e'} \frac{e^2}{|\mathbf{r}^e - \mathbf{r}^{e'}|} \rho^e(\mathbf{r}^e, t) \rho^e(\mathbf{r}^{e'}, t) - E_{XC}^e[\rho^e]$$

$$+ \int d\mathbf{r}^{p} \sum_{j} [\psi_{j}^{p}(\mathbf{r}^{p},t)]^{*} \left[i \frac{\partial}{\partial t} + \frac{1}{2M^{p}} \nabla_{\mathbf{r}^{p}}^{2} \right] \psi_{j}^{p}(\mathbf{r}^{p},t) - \frac{1}{2} \iint d\mathbf{r}^{p} d\mathbf{r}^{p\prime} \frac{e^{2}}{|\mathbf{r}^{p} - \mathbf{r}^{p\prime}|} \rho^{p}(\mathbf{r}^{p},t) \rho^{p}(\mathbf{r}^{p\prime},t) - E_{XC}^{p}[\rho^{p}]$$

$$+\frac{1}{2}\iint d\mathbf{r}^{e} d\mathbf{r}^{p} \frac{e^{2}}{|\mathbf{r}^{e}-\mathbf{r}^{p}|} \rho^{e}(\mathbf{r}^{e},t)\rho^{p}(\mathbf{r}^{p},t) - E_{epc}[\rho^{e},\rho^{p}]$$

$$+\sum_{I} \frac{1}{2} M_{I} [\dot{\mathbf{R}}_{I}(t)]^{2} - \sum_{I < J} \frac{Z_{I} Z_{J} e^{2}}{|\mathbf{R}_{I}(t) - \mathbf{R}_{J}(t)|} \\ - \int d\mathbf{r}^{p} \rho^{p} (\mathbf{r}^{p}, t) \sum_{I} \frac{Z_{I} e^{2}}{|\mathbf{r}^{p} - \mathbf{R}_{I}(t)|} + \int d\mathbf{r}^{e} \rho^{e} (\mathbf{r}^{e}, t) \sum_{I} \frac{Z_{I} e^{2}}{|\mathbf{r}^{e} - \mathbf{R}_{I}(t)|}$$

TD-KS equations for RT-NEO-TDDFT

$$A = \int L^{NEO} \left(\mathbf{R}, \dot{\mathbf{R}}, \{\psi_{i,\mathbf{k}}^{e}\}, \{\psi_{I}^{p}\}, t \right) dt \qquad \frac{\delta A}{\langle \delta \psi^{x} |} = 0 \qquad \frac{\delta L^{NEO}}{\langle \delta \psi^{x} |} - \frac{d}{dt} \frac{\delta L^{NEO}}{\langle \delta \dot{\psi}^{x} |} = 0$$

See. e.g. Kramer and Saraceno, "Geometry of the Time-Dependent Variational Principle" (Springer, Berlin, 1981).

Electrons:
$$i \frac{\partial}{\partial t} \psi^{e}_{i,\mathbf{k}}(\mathbf{r}^{e},t) = \left[-\frac{1}{2} \nabla^{2}_{i} + v^{e}_{\text{DFT-KS}}(\mathbf{r}^{e}) - v^{p}_{es}(\mathbf{r}^{e}) + \frac{\delta E_{epc}[\rho^{e},\rho^{p}]}{\delta \rho^{e}} \right] \psi^{e}_{i,\mathbf{k}}(\mathbf{r}^{e},t)$$

RT-TDDFT All-electron real-time and imaginary-time TDDFT within a numeric atom-centered basis function framework J. Hekele, et al. J. Chem. Phys. 155, 154801 (2021)

Protons:
$$i \frac{\partial}{\partial t} \psi_I^p(\mathbf{r}^p, t) = \left[-\frac{1}{2M^p} \nabla_I^2 + v_{\text{DFT-KS}}^p(\mathbf{r}^p) - v_{\text{es}}^e(\mathbf{r}^p) + \frac{\delta E_{\text{epc}}[\rho^e, \rho^p]}{\delta \rho^p} \right] \psi_I^p(\mathbf{r}^p, t)$$

L. Zhao, et al., J. Phys. Chem. Lett. 11, 4052 (2020)

$$\psi_i^p(\mathbf{r}^p, t) = \sum_m c_{im}(t) \sum_N \phi_m^{p:GTO} \left(\mathbf{r}^p - \mathbf{R}_m + \mathbf{T}(\mathbf{N}) \right)$$

$$\mathbf{C}(t + \Delta t) = \mathbf{S}^{-\frac{1}{2}} \exp\left(-i\Delta t \mathbf{S}^{-\frac{1}{2}} \mathbf{H}_{KS} \left(t + \frac{\Delta t}{2} \right) \mathbf{S}^{-\frac{1}{2}} \right) \mathbf{S}^{\frac{1}{2}} \mathbf{C}(t)$$

$$\exp(\mathbf{A}) = \mathbf{V} \operatorname{diag} \left(e^{\lambda_1}, e^{\lambda_2} \dots e^{\lambda_n} \right) \mathbf{V}^{-1}$$

Electronic Excitation Induced Intra-Molecular Proton Transfer

L. Zhao, et al., J. Phys. Chem. Lett. 11, 4052 (2020)

oHBA attached on Semiconductor Surface

oHBA

~3700 electrons.

H⁺ transfer does NOT take place!

Electron Density Changes at Interface

Electron density change : $\Delta \rho^{e}(\mathbf{r}, t)$ Increases / Decreases

Ultrafast transfer of excited electron to semiconductor surface.

No driving force for the intramolecular H⁺ transfer.

Role of Excited Electron Transfer

Controlling Electron Transfer w/ Linker Group

Excited electron transfer to the semiconductor is significantly slower with the linker group.

Excitation-induced H⁺ transfer takes place!

Dependence on the surface attachment

Surface attachment controls intramolecular H⁺ transfer via interfacial excited electron transfer.

Summary and References

NEO-DFT method for periodic systems.

Nuclear-Electronic Orbital Approach to Quantization of Protons in Periodic Electronic Structure Calculations J. Xu, R. Zhou, Z. Tao, C. Malbon, V. Blum, S. Hammes-Schiffer, Y. Kanai J. Chem. Phys. 156, 224111 (2022)

RT-TDDFT Implementation in all-electron periodic systems with NAO basis.

All-electron real-time and imaginary-time time-dependent density functional theory within a numeric atom-centered basis function framework

J. Hekele, Y. Yao, Y. Kanai, V. Blum, P. Kratzer J. Chem. Phys. 155, 154801 (2021)

Periodic RT-NEO-TDDFT method for studying coupled electron-proton dynamics in

heterogeneous systems

First-Principles Approach to Coupled Quantum Dynamics of Electrons and Protons in Heterogeneous Systems J. Xu, R. Zhou, V. Blum, T. E. Li, S. Hammes-Schiffer, Y. Kanai Phys. Rev. Lett. 131, 238002 (2023) Editors' Suggestion

Ehrenfest dynamics extension using Lagrangian formulation for traveling proton basis scheme

Lagrangian Formulation of RT-NEO-TDDFT Ehrenfest Dynamics (temp)

J. Xu, R. Zhou, T. E. Li, S. Hammes-Schiffer, Y. Kanai In preparation

