

Theoretical Insight into CO₂ Capture and Conversion

Jacek Jakowski

Oak Ridge National Laboratory

Oak Ridge, Tennessee May 29, 2024

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Acknowledgment

ORNL

- Jingsong Huang
- Syed Islam
- Panchapakesan Ganesh
- David Lingerfelt
- Bobby G. Sumpter
- David S. Sholl
- University of South <u>Carolina</u>
 - Sonya Garashchuk
 - Vitaly Rassolov

- North Carolina State University (RMG-DFT)
 - Jerry Bernholc
 - Wenchang Lu
 - Emil Briggs

Spallation Neutron Source (SNS) & Center for Nanophase Material Science (CNMS)

This work was performed at the Center for Nanophase Materials Sciences, a U.S. Department of Energy Office of Science User Facility.

Office of

Science

CENTER FOR NANOPHASE MATERIALS SCIENCES

Molecular dynamics of nuclei and electrons

Parameterized force fields

Energy and forces on molecules from parameters

Molecules moved: Newton's laws

(MM)

CAK RIDGE National Laboratory Born-Oppenheimer dynamics (Time-independent Quantum Mechanics)

Solve electronic Schrödinger Eq. (convergence) at nuclear Configuration

$$\hat{H}\psi(r;t) = E\psi(r;t)$$

Nuclei propagated from gradients (classically)

(BOMD)

Time-dependent Quantum Mechanics (electrons) Electronic structure:

Quantum dynamics:

$$i\hbar \frac{\partial}{\partial t} \psi(r;t) = \hat{H}\psi(r;t)$$

Nuclei propagated from gradients (classically)

(QD-electrons)

Time-dependent Quantum Mechanics (nuclei) Electronic structure or force fields

Nuclei propagated quantum dynamically $i\hbar \frac{\partial}{\partial t} \psi(R;t) = \hat{H}\psi(R;t)$

(QD-nuclei)

Jacek Jakowski

Isotopic substitution & quantum nuclear effects

- development of new quantum methods
- deuterations
- electronic structure

Quantum trajectories

Collaborations:

- Jingsong Huang
- **Bobby Sumpter**
- Sophya Garashchuk (USC)
- Vitaly Rassolov (USC)

Selected publications:

[1] J.Chem.Theory Comp **12**, 4487-4500. 2016 [2] J. Phys. Chem. Lett, 8, 4333–4340 (2017) [3] Macromolecules, (2021), 54, 3555-3584 **CAK RIDGE** National Laboratory

Electron/ion beam interactions with materials

- beam of energetic ions of electrons

0.004

0.008

Het

- electron dynamics
- excited states

- **Collaborations:**
- David Lingerfelt
- Ganesh Panchakepasan
- Jery Bernholc (NCSU)

Selected publications:

[1] Nanoscale, 9, 12949-12956 (2017)

- [2] Science 363, 525 (2019)
- [3] J. Chem. Theory Comp (2020)16, 1200
- [4] Theoretical Comp. Chem (2022) 21, 61

Quantum Computing

- quantum chemistry benchmarks - small molecules
- many-body theory $|\psi(\theta)\rangle = e^{T-T^{\dagger}} |\psi_0\rangle$

Collaborations:

- Titus Morris
- Stephan Irle
- **Gonzalo Alvarez**
- Ryan Benink

Selected publications:

[1] NPJ-Quantum Inf. (2019) 5:99 [2] Adv. Quantum Techn. (2021) 4, 2100012 [3] ACM Trans. on Quant. Comput. (2023), 4, 27:1-14

Challenge: Closing Carbon Cycle

Solar to Hydrocarbons

Key DOE questions:

How to balance release and capture of CO_2 to mitigate climate change?

- Reduce emission of CO₂ (solar, wind nuclear energy, efficiency?)
- Carbon capture and storage
- Conversion of CO_2 to useful chemicals (solar liquid fuels)

Liquid solar fuels (DOE definition):

- Energy dense chemicals at (or near) ambient conditions (methanol, hydrocarbons, oxygenated hydrocarbons, and nitrogen-containing compounds)
- Catalysis: sequential reduction processes.

Advances require *molecular-level understanding* and control of the microenvironment *around catalytic sites* to direct reactions for key bond-making and bond-breaking steps

Overview

- Part I. Quantum chemistry simulations of CO₂ capture in reline, a prototypical deep eutectic solvent
 - ab initio dynamics
 - ground state, DFTB

[1] S. Z.Islam, [Ind. & Eng. Chem. Res. (2023) 62, 10,4455
[2] J. Jakowski, et al. J. Phys. Chem. B, (2023), 127, 8888

- Part II. Towards modeling of CO₂ reduction via real time TDDFT
 - theory, implementation, benchmarking
 - electronic excitation, non-equilibrium processes

Part I. Quantum chemistry simulations of CO_2 capture in reline, a prototypical deep eutectic solvent

Part I. Summary of Results

Electronic and entropic effects lead to selective capture of CO_2 vs N_2 in reline (DES)

1:2 choline chloride/urea (Deep Eutectic Solvent)

Quantum Chemical Simulations of CO_2 and N_2 Capture in Reline, a Prototypical Deep Eutectic Solvent

What are Deep Eutectic Solvents?

Eutectic systems

- A binary mixture of A+B (example: metal alloys)
- Eutectic composition (L): homogeneous mixture at eutectic point
- Melting temperature: $T_L < T_A$ and $T_L < T_B$
- Non-eutectic composition:
 -mixture of L (liquid) and solid A or B

A phase diagram of binary mixture of A+B (source: Wikipedia)

Deep Eutectic Solvents (DES)

Properties

- Mixture of hydrogen bond donor (HBD) and acceptor (HBA)
- HBA : salts with cation acting as H-acceptor
- HBD : critical in suppressing melting Temp
- Tunable (modify HBA/ HBD)
- Cheap, biodegradable, low toxicity,
- Low vapor pressure

CAK RIDGE

Example components

- Choline chloride
- Tetraethylammonium bromide
- Urea
- Acetamide
- Glycerol
- Phenol
- Lactose

Applications

- Pharmaceuticals
- Biocatalysis
- Separation
- Extraction

Reline as a Deep Eutectic Solvent

• Reline:

- choline chloride (HBA) + urea (HBD)
- 1:2 molar ratio

Melting Temperatures

- Choline chloride: 302 °C
- Urea: - Reline:

130 °C 12 °C

Properties:

- Thermally stable
- Non-toxic
- Biodegradable
- Negligible vapor pressure
- Inexpensive

H_O

Experimental work

Les earch Industriel & Engineering Chemistry Research

pubs.acs.org/IECR

A Membrane Contactor Enabling Energy-Efficient CO₂ Capture from Point Sources with Deep Eutectic Solvents

Syed Z. Islam,* Md Arifuzzaman, Gernot Rother, Vera Bocharova, Robert L. Sacci, Jacek Jakowski, Jingsong Huang, Ilia Nicolaevich Ivanov, Ramesh R. Bhave,* Tomonori Saito, and David S. Sholl

Polypropylene hollow fibers

Article

• Purity recovered CO₂ of 96.7%

Experimental results

- Separation of CO $_2$ with 96.7% purity from 50%/50% mixture of CO $_2/N_2$
- No N₂ detected
- Input pressure up to 2 bars
- FTIR suggests physisorption
- Question: what is the mechanism?

Ind. Eng. Chem. Res. 2023, 62, 10, 4455-4465

Simulations

Computational model:

- urea 8 atoms
- choline 22 atoms
- DES (304 atoms= 8 cholines+16 ureas)
- periodic box: 1.5x1.5x1.5nm

Siepmann, JPCB 2018, 122, 1245

Goal:

- Understand FTIR experimental data
- Explain binding energy and affinity of reline towards CO₂, N₂
- Validate computational model towards search for future DES

Methodology:

- Electronic structure: DFTB(periodic) & DFT
- IR from MD (ACF) vs IR from Hessian
- Binding energy & motifs
- Statistical mechanics (ZPE, thermal effects, entropy)
- Temperature: 333.15K

Overview of Density Functional Tight-Binding

Extended Hückel type method using atomic parameters from DFT (PBE, GGA-type), diatomic repulsive potentials from B3LYP

- Seifert, Eschrig (1980-86): STO-LCAO; 2-center approximation
- Porezag et al. (1995): efficient parameterization scheme: NCC-DFTB
- Elstner et al. (1998): charge self-consistency: SCC-DFTB
- Köhler et al. (2001): spin-polarized DFTB: SDFTB
- Houraine et al. (2020): DFTB+, a software package

$$E^{(NCC-)DFTB} = \sum_{i}^{valence} n_i \varepsilon_i + \frac{1}{2} \sum_{A \neq B}^{atoms} E_{AB}^{rep}$$
Zeroth-order (TB) Hamiltonian:
no e-e interactions
$$E^{(SCC-)DFTB} = E^{(NCC-)DFTB} + \frac{1}{2} \sum_{A \neq B}^{atoms} \gamma_{AB} \Delta q_A \Delta q_B$$
Self-consistent charge-charge
interactions
$$E^{S(pin-polarized)DFTB} = E^{(SCC-)DFTB} + \frac{1}{2} \sum_{A \neq B}^{atoms} \sum_{l \in A} \sum_{l' \in A} p_{Al} p_{Al'} W_{All'}$$
Self-consistent
spin-spin interactions

$$E = Tr[h^{core} + \frac{1}{2}G(P)P]$$

16

 $F = h^{core}$

Overview of Density Functional Tight-Binding

- Only valence electrons considered
 - minimal basis set, 1 to 9 per atom, Slater type orbitals
 - energy obtained by diagonalization of generalized DFTB eigenvalue problem: $\mathbf{H}^{0}\mathbf{C} = \mathbf{SC}\varepsilon$ with $S_{\mu\nu} = \langle \chi_{\mu} | \chi_{\nu} \rangle$

 $H^{0}_{\mu\nu} = \left\langle \chi_{\mu} \middle| \hat{H} \bigl[\rho_{0}^{M}, \rho_{0}^{N} \bigr] \middle| \chi_{\nu} \right\rangle$

b

energy [Hartree]

0.8

0.6

0.2

0.0

 $\gamma(R_{IJ})$

 $---1/R_{II}$

4

 $R_{II}[Bohr]$

• Coulomb asymptotic for electron-electron

term:

 $E_{el-el} = \frac{1}{2} \sum_{A \neq B}^{atoms} \Delta q_A \cdot \gamma_{AB}(R_{AB}) \cdot \Delta q_B$

 γ_{AB} — distance-dependent charge-charge interaction functional; $\gamma_{AB} = \gamma_{AB} (U_A, U_B, R_{AB})$ for $R_{AB} \rightarrow \infty$: Coulomb potential $1/R_{AB}$ $\gamma_{AA} = \gamma_{AA} (U_A, U_A, R_{AA})$ for $R_{AA} \rightarrow 0$: Hubbard $U_A = \frac{1}{2}(IP_A - EA_A)$

• Parameters are publically available and transferable (not all elements are parametrized)

Main repositories (U. of Bremen, Germany)

http://www.dftb-plus.info/

http://www.dftb.org

Overview of Density Functional Tight-Binding

Main Features & Advantages

- Localized A.O. with PBC
- Very fast:
 - routine MD for ~1000 atoms on a desktop
 - 30ps long MD for ~300 atoms within a day timescale
- Accuracy comparable to DFT
- Code is open source
- Many features implemented: band structure, transport (NEGF), TDDFT, Grimme dispersion

Weaknesses

- Parameters not comprehensive
- Parameters often deed tweaking & benchmarking before use

Simulations

- Simulations of FTIR: CO_2 in gas phase and liquid reline
- Binding energy: CO_2 vs N_2 in reline
- Thermal, entropy effects
- Binding motifs

19

Vibrational spectra of CO_2 in gas phase and in reline

IR of CO₂ molecule (linear)

• 3 atoms → 4 vibrations (=3N-5)

Normal modes analysis

- Bending (double degenerate)
- Symmetric stretching
- Asymmetric stretching

Benchmark: CO₂ molecule gas phase

FTIR spectra from MD:

- Save time dependent dipoles
- ... or save charges and velocities
- Dipole-dipole autocorrelation function
- Fourier transform it

$$I(\omega)_{cl} = \frac{1}{2\pi\omega^2} \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \left\langle \frac{d\vec{M}(0)}{dt} \cdot \frac{d\vec{M}(t)}{dt} \right\rangle$$
$$= \frac{1}{2\pi\omega^2} \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \left\langle \left(\sum_{i=1}^{n} q_i \vec{v}_i(0)\right) \cdot \left(\sum_{j=1}^{n} q_j \vec{v}_j(t)\right) \right\rangle$$
$$\frac{d\vec{M}}{dt} = \frac{d}{dt} \sum_{i} q_i(t) \vec{R}_i(t) = \sum_{i} [\dot{q}(t)R(t) + q(t)\dot{R}(t)]$$

Benchmark: CO₂ molecule gas phase

• FTIR from Experiment (data from NIST): https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Type=IR-SPEC&Index=1#IR-SPEC

• FTIR from Simulations:

- calculated as average over 100 MD simulations
- NVE with initial random velocities corresponding to T=300K

Vibrational spectra of CO₂ in gas phase and in reline

- Experiment: no chemistry, physisorption
- What is the effect of reline on CO₂ spectra?
- How does CO₂ binds o reline?

National Laboratory

Vibrational spectra of CO₂ in reline

- Molecular dynamics simulations
- Periodic simulation box cube (1.43 nm)
- 10 randomized structures of reline + CO₂:
 8 cholines +16 ureas +1 CO₂ (total 307 atoms)
- Monte Carlo based insertion of of gas
- Electronic structure from DFTB3 +dispersion
- 3ob parametrization
- Periodic boundary condition with Gamma point sampling
- Constant energy microcanonical ensemble
- Initial kinetic energy corresponding to 300 K
- Total time =30ps, time step dt=1ps
- IR /power spectra as average over all simulations
- IR spectra from dipole-dipole autocorrelation function
- All modes (IR+Raman) from velocity-velocity autocorrelation function

Vibrational spectra of CO_2 in reline

Simulations details

- 3rd order DFTB+dispersion
- Periodic boundary condition
- no chemistry, physisorption
- What is the effect of reline on CO_2 spectra?
- How does CO₂ binds o reline?

Vibrational spectra of CO_2 in gas phase and in reline

Correlation of vibrational modes, binding energy and structure descriptors

- Binding of $CO_2 vs N_2$ in reline
- 10 randomly packed structures of reline (thermalized, NVT)
- Monte Carlo based search for voids
- Optimization: 3rd order DFTB + dispersion, 3ob parameters
- Normal modes analysis (mass weighted Hessian)
- Analysis: binding energy, separation (gas vs. reline), O-C-O angle, IR shift
- ZPE energy, entropy & thermochemistry corrections

27

Correlation of vibrational modes, binding energy and structure descriptors

• Binding energy (electronic)

$$E_{BE}^{0} = E(G..S) - E(G) - E(S)$$

• Corrections (ZPE, thermochemistry)

$$\Delta E_{BE}^X = E^X(G_{solvent}) - E^X(G_{gas})$$

$$E_{BE}^X = E_{BE}^0 + \Delta E_{BE}^X$$

Thermochemistry: effects of entropy, Temp & Press

- Gas phase $CO_2 \& N_2$ vs dissolved in reline
- Gas phase CO₂:
 3 translations, 2 (or 3) rotations , 6 vibrations
- Gas phase N₂:
 3 translations, 2 rotations, 1-vibration
- CO₂ in reline:
 0 translations, 0 rotation, 9 vibrations
- N₂ in reline:
 - 0 translations, 0 rotations, 6 vibrations

Partition function: $Q = q_{rot} * q_{transl} * q_{vib}$ $Q = \left[\frac{k_B T}{P} \left(\frac{2\pi m k_B T}{h^2}\right)^{3/2} \cdot \frac{T}{\sigma \theta_{rot}}\right]^{\delta} \cdot \left\{\prod_{j=1}^{N_{vib}} \frac{e^{-\theta_j^{vib}}/2T}{1 - e^{-\theta_j^{vib}}/T}\right\} \qquad \text{Gas phase: } \delta = 1, \text{ Nvib=5}$ In reline: $\delta = 0, \text{ Nvib=9}$ Main contribution to E_{BE} : conversion of transl, rot \Rightarrow vibrations

Thermochemistry: effects of entropy, Temp & Press Partition function: $Q=q_{rot}^*q_{transl}^*q_{vib}$ $Q = \left[\frac{k_BT}{P}\left(\frac{2\pi m k_BT}{h^2}\right)^{3/2} \cdot \frac{T}{\sigma\theta_{rot}}\right]^{\delta} \cdot \left\{\prod_{j=1}^{N_{vib}} \frac{e^{-\theta_j^{vib}}/2T}{1-e^{-\theta_j^{vib}}/T}\right\}$ Gas phase: $\delta = 1$, Nvib=5 In reline: $\delta = 0$, Nvib=9

Main contribution to E_{BE} : conversion of transl, rot \rightarrow vibrations

Minimal Solvation model

Gas molecules trapped in void

1st solvation shell model

31

Correlation of vibrational modes, binding energy and structure descriptors

FTIR of CO₂ in reline

Correlation of vibrational modes, binding energy and structure descriptors

Binding energy (BE)

- Electronic energy only DFTB3/3ob
- No entropy /thermal effects
- Energy with respect to gas phase
- All structures optimized

B3LYP/6-31G(d)

34

Binding energy

Electronic +vibrational corrections

 CO_2

 N_2

Entropy effects included

EXAMPLE OAK RIDGE

Summary of Results

Electronic and entropic effects lead to selective capture of CO_2 vs N_2 in reline (DES)

Experiment and simulations of CO2 capture in deep eutectic solvents **Reline is a mixture of 1:2 molar ratio of:**

Polymer Hollow Fiber Membrane Contactor

Electronic and **entropic** effects lead to selective capture of CO_2 in reline (DES) with from CO_2/N_2 mixture with 97% purity

37

[1] S. Z.Islam, [Ind. & Eng. Chem. Res. (2023) 62, 10,4455 [2] J. Jakowski, et al. J. Phys. Chem. B, (2023), 127, 8888

Part II. Towards modeling of CO₂ conversion from real time TDDFT

- Real-time TDDFT: electronic excitation, non-equilibrium processes
- Theory, implementation, benchmarking
- RMG-DFT program

Carbon dioxide conversion

- Needs for computational models:
 - non-equilibrium charge transfer, redox
 - electronically excited states during dynamics
 - interaction with UV-VIS, laser pulses
 - coupling between electrons and nuclei
 - charge transfer, nanoelectronics
 - applicable for large systems

Electrochemical

J. Electrochem. Soc. 161, H558 (2014).

RMG-DFT calculations on Frontier

Graphene nanocone + waters: 2,979 atoms and 8,000 electrons

Important system for electricfield-assisted catalysis

RMG - A REAL SPACE MULTIGRID DFT CODE

Home Github Project Page

Download Documentation Get Help

About RMG

RMG is an Open Source computer code for electronic structure calculations and modeling of materials and molecules. It is based on density functional theory and uses real space basis and pseudopotentials. Designed for scalability it has been run successfully on systems with thousands of nodes and hundreds of thousands of CPU cores. It runs on Linux/UNIX, Windows and OS X.

Collaboration with RMG-DFT team at NCSU: J. Bernholc, Wenchang Lu and Emil Briggs http://www.rmgdft.org

Real-space Multi-Grid method (RMG)

- Full-featured DFT/hybrid-DFT code: DFT equations solved directly on the grid.
- Multigrid techniques remove instabilities by working on one length scale at a time.
- Excellent parallelization via domain decomposition: multi-core CPUs, multiple GPUs/node, many nodes. Runs well on Frontier, Aurora, Summit, Perlmutter, Polaris, clusters, and workstations.
- Full Nvidia, AMD and Intel GPU support: uses all CPU cores and GPUs per node.
- Norm-conserving and ultrasoft pseudopotentials included in the distribution.
- High performance for all lattice types.
- Hybrid functionals, LDA+U, vdW-DF, Grimme, and spin-orbit coupling.
- Web interface for setting up input using cif, xyz, VASP, or Quantum Espresso files.
- > Web interface for analyzing results.

LIVIIIII LAUVIALUI

- > Very high accuracy vs. Quantum Espresso: μ Ha/atom.
- Supported by the Exascale Computing Project for large-scale DFT input to QMCPACK

Ref: Briggs, Lu, Bernholc, npj Comput. Mater. (2024) 10, 17

Electron dynamics

- Theory:
- Magnus Expansion
- Density matrix propagation (von Neuman eq.)
- Commutator expansion
- Implementation and benchmarks:
- CPU/GPU
- Optical absorption spectra UV-VIS (benzene, plasmonics)
- timing information

Theory: Magnus expansion

- Evolution of density matrix for electrons $\frac{\partial P(t)}{\partial t} = -\frac{\imath}{\hbar} \left[H(t), P(t) \right]$
- Formal solution through time-evolution operator

$$\begin{aligned} \mathcal{U}(t) &= \exp\left(-\frac{\imath}{\hbar} \int_0^t H(t')dt'\right) \\ P(t) &= \mathcal{U}(t) \cdot P(0) \cdot \mathcal{U}(t)^{\dagger} \\ &= \exp(\Omega) \cdot P(0) \cdot \exp(\Omega)^{\dagger} \end{aligned}$$

• where operator Ω is from **Magnus expansion** refs: 1) W. Magnus, Commun. Appl. Math 7,649 (1954) 2) J. Oteo, J. Ros, J. Math Physics 41, 3268 (2000) 3) Jakowski, Morokuma J. Chem. Phys. 130, 224106 (2009)

Comparison with other codes

44 **CAK RIDGE** National Laboratory

Real time TD-DFT simulations of plasmonic response of Ag nanorod

 ORNL Frontier nodes: CPU: 64 core AMD EPYC, GPU: 4x Radeon Instinct MI250X, total 8GPU per node)

- System: Ag nanorod, up 1620 atoms, (17,820 electrons), semicore (19e) vs frozen core calcs (11e)
- Investigating dipolar longitudinal localized surface plasmon. 2,500 time steps, 0.2 AU time steps (=500 AU), walltime : TDDFT: 11s /step, SCF: 114 sec/ iteration

Redshifts of plasmon resonance peak with increasing size as expected. Empirical expression for plasmon peak position

Empirical expression for plasmon peak position

$$\lambda = \lambda_0 + k \cdot k$$

where

$$\lambda = 1/$$

Ref: J. Chem. Theory Comput. (2024) - in preparation

 ω

Frontier

Frontier:

- 9,408 AMD compute nodes
- Hybrid CPU/GPU

Compute node:

- 64-core AMD "Optimized 3rd Gen EPYC" CPU
- Memory: 512 GB
- 4x accelerators AMD Radeon Instinct MI250X
- 8X GPUs per node
- 9,408 AMD compute nodes.

GPU accelerators:

- 4x AMD Radeon Instinct MI250X
- 2x GPU /acceleator
- 14,080 cores
- 128 GB
- 1000 Mhz
- 6nm tech

Acknowledgment

ORNL

- Jingsong Huang
- Syed Islam
- Panchapakesan Ganesh
- David Lingerfelt
- Bobby G. Sumpter
- David S. Sholl
- University of South <u>Carolina</u>
 - Sonya Garashchuk
 - Vitaly Rassolov

- North Carolina State University (RMG-DFT)
 - Jerry Bernholc
 - Wenchang Lu
 - Emil Briggs

47

Spallation Neutron Source (SNS) & Center for Nanophase Material Science (CNMS)

This work was performed at the Center for Nanophase Materials Sciences, a U.S. Department of Energy Office of Science User Facility.

Office of

Science

CENTER FOR NANOPHASE MATERIALS SCIENCES