Virtual International Seminar on Theoretical Advancements

Traveling in a space of approximations for modeling of photoinduced dynamic processes Dmitri Kilin

Department of Chemistry and Biochemistry, North Dakota State University, Fargo ND 58108; Email: Dmitri.Kilin@ndsu.edu

Principles of Research

synthesis

characterization

Study of mechanisms

Is there a "ready-to-use" public software to model photoinduced dynamics?

Adjustments of methodology

- Independent Orbitals Approximation
- Extract probabilities of non-radiative transitions from molecular dynamics, by "on-the-fly" protocol
- A very quick original code for dynamics of quantum state
- Time-independent coefficients in equation of motion enable time from 1fs to 1ns

Reference: Kilina, Kilin, Tretiak, Chemical Reviews 2015 115 (12), 5929-5978. cited 135

Timing: 1:55

Collaboration between Theory and Experiment

PHOTOLUMINESCENCE

-At which wavelength the material emits light?

-Does emission occur at the same wavelength or in a range of frequencies?

-Does temperature enhance or suppresses emission?

-What is more probable:

to emit light or to convert energy into heat?

-Do surface adsorbates suppress or enhance photoluminescence?

Specific methods adjustments for modeling of photoluminescence

<u>Research Direction</u>: (ii) Photoluminescence

Timing: 2:29

Linewidth thermal broadening of PL signal via MD sampling Suggested abbreviation:

Molecular Dynamics Photo Luminescence (MDPL)

Research Direction: (ii) Photoluminescence

Research Direction: (ii) Photoluminescence

Quenching of photoluminescence in a Zn-MOF sensor by nitroaromatic molecules

Reference: Jensen, Tan, Lustig, Kilin, Li, Chabal, Thonhouser J. Mater. Chem. C, 2019,7, 2625-2632

Specific methods adjustments for modeling of photoluminescence

Specific methods adjustments for modeling of photoluminescence

Research Direction: (ii) Photoluminescence

Timing: 2:43

Justification: predict outcome of measurement prior to experimental observations

Reference: Vogel, Kryjevski, Inerbaev, Kilin J. Phys. Chem. Lett. 2017 8, 3032

Research Direction: (ii) Photoluminescence

Timing: 0:59

Quantum Confinement in Lead Halide Perovskite Quantum Dots

Justification: predict outcome of measurement prior to experimental observations

Reference: Vogel, Kryjevski, Inerbaev, Kilin J. Phys. Chem. Lett. 2017 8, 3032-3039.

26

cited 39 times

Specific methods adjustments for modeling of photoluminescence

Research Direction: (ii) Photoluminescence

<u>Reference</u>: Forde, Inerbaev, Hobbie, Kilin, J. Am. Chem. Soc. 2019, 141, 10, 4388–4397

Hot polaron Infrared emission

PHOTOREACTIONS

-does light change a molecule?

-which frequency / intensity of light facilitate most vivid reaction?

-which molecules are produced by a photoreaction?

-what is relative proportion of different product molecules?

-what would be a mass-spectrum for distribution of photoreaction' products?

PHOTOREACTIONS

- "fork road" ambiguity of reaction pathways originating from the same precursor
- Many isomers!
- A need to choose pathway/target isomer by tuning laser light parameters
- Very long time-scales, hard to simulate

Timing: 1:13

Timing: 0:51

ALL STAGES OF PHOTOREACTION

1

Justification: Quantitatively matches experiment: mass and intensity in the mass-spectra

Reference: Han, Meng, Rasulev, May, Berry, Kilin, J. Chem. Theory Comput. 2017, 13, 4281–4296

Reference: Han, Meng, Rasulev, May, Berry, Kilin, J. Chem. Theory Comput. 2017, 13, 4281–4296

Timing: 1:56

Justification: matches experimental trends

Reference: Han, Anderson, Hobbie, Boudjouk, Kilin, J. Phys. Chem. Lett. 2018, 9, 4349–4354

https://youtu.be/5JmGb5vx-dE

Timing:	1:11
1.11.11.15.	

Justification: matches experimental trends

Reference: Han, Anderson, Hobbie, Boudjouk, Kilin, J. Phys. Chem. Lett. 2018, 9, 4349–4354

Justification: matches experimental trends

Reference:

Role of Quantum Tunneling for Proton Transfer: Case Study of Monomethylhydrazine and Nitrogen Dioxide Inition

Justification: matches experimental trends

Reference: Han, Hobbie, Kilin J. Phys. Chem. Lett. 2019, 10, 2394–2399

Timing: 2.38

Role of Quantum Tunneling for Proton Transfer: Case Study of Monomethylhydrazine and Nitrogen Dioxide Ignition

Justification: matches experimental trends

Reference: Han, Hobbie, Kilin J. Phys. Chem. Lett. 2019, 10, 2394–2399

53

Timing:

1.06

Acknowledgement

(i)	harge transfer	NSF CHE-2004197
		"Modeling of Charge Transfer Processes
		in Heterostructured Nanocomposites"
		ND EPSCOR seed
		DOE NERSC facility DE-AC02-05CH11231
		"Computational Modeling of Photo-catalysis and
		Photo-induced Charge Transfer Dynamics on Surfaces"
(ii)	Photoluminescence	NSF CHE-1800476
		"D3SC: Integrated Studies on Designing Organometallic Complexes
		with Nonlinear Absorption and Near-Infrared Emission'
		LANL CINT facility visit
(iii)	Photoreactions	NSF CHE-1944921
		"CAREER: Investigation of laser-driven
		chemical reactions by molecular dynamics"
		local DOE CCAST seed
All	projects:	Department and College startup

Back to School Thank you to all attendees of this seminar:

face-to-face

Special

and online!

