Simulations of Ultrafast Spectroscopy Observables Using the GPU-accelerated Time-dependent Complete Active Space Configuration Interaction Method

Arshad Mehmood* and Benjamin G. Levine

Institute for Advanced Computational Science (IACS) and Department of Chemistry

Stony Brook University, NY.

Transient Absorption Spectroscopy (TAS)

Characteristics

- Time Resolution: TAS offers extremely high time resolution allows to monitor ultrafast processes in femtoseconds scale
- Versatility: This technique is versatile and can be applied to a wide range of systems
- Sensitivity: highly sensitive to changes in electronic and structural properties of molecules or materials

Berera, R., van Grondelle, R. & Kennis, J.T.M., Photosynth Res 2009, 101, 105-118.

Limitations of TAS – The Motivation

The interpretation of the TA spectrum (TAS) is inherently indirect:

Lower-dimensional Observables

 Overlap of positive (excited state absorbance) and negative (stimulated emission and ground state bleach) signals

Ultrafast theory has become an essential partner to experiment and is a standard requirement to correctly assign the ultrafast signals.

Silfies, M. C.; Mehmood, A.; Kowzan, G.; Hohenstein, E. G.; Levine, B. G.; Allison, T. K. *J. Chem. Phys.* **2023**, *159*, 104304. Silfies, M. C.; Kowzan, G.; Lewis, N.; Allison, T. K., *Phys. Chem. Chem. Phys.*, **2021**, *23*, 9743-9752.

Why to Simulate Ultrafast Signals...?

- The AIMD provides $|\Psi_{approx}(t)\rangle$ that can be used to assign ultrafast experiment
- Common procedure involve comparing experimental and AIMD time constants
- Due to the exponential relation, error in rates are amplified due to a small error in the barrier height
- Direct comparison of experimental and simulated observables provide a more accurate solution.

• Our Approach

We combined non-adiabatic molecular dynamics (NAMD) simulations (a pump) with our GPU-accelerated Time-dependent Complete Active Space Configuration Interaction (TD-CASCI) method (a probe) for simulating both the ultrafast dynamics and TAS.

Silfies, M. C.; Mehmood, A.; Kowzan, G.; Hohenstein, E. G.; Levine, B. G.; Allison, T. K. *J. Chem. Phys.* **2023**, *159*, 104304. Silfies, M. C.; Kowzan, G.; Lewis, N.; Allison, T. K., *Phys. Chem. Chem. Phys.*, **2021**, *23*, 9743-9752.

Simulation Protocol

 TD-CASCI electronic dynamics are run on each selected conformation derived from the time-slices of NAMD trajectories

• A δ -kick with a field polarized along the x, y, and z axes of the molecular axis.

Time-dependent CASCI (TD-CASCI): The Probe

 Linear variational method for solving the Schrödinger equation using a wave function that is a linear combination of configuration state functions:

Peng, W.-T.; Fales, B. S.; Levine, B. G., J. Chem. Theory Comput. 2018, 14, 4129-4138.

Time-dependent CASCI (TD-CASCI): The Probe

• Electric field excitation are included by using the electric dipole approximation:

$$\hat{H}(t) = \hat{H}_0 - \hat{oldsymbol{\mu}} \cdot \overrightarrow{dE}(t)$$

$$R(t) = ec{C}(arepsilon)^\dagger ec{C}(arepsilon+t)$$

• Pump-probe orientations:

$$R_{ ext{magic}}\left(E
ight) = ig(R_{\parallel}(E) + R_{\perp}(E)ig)/3$$

$$R_{\parallel}(E) = 0.2 R_{
m x}^2(E) + 0.2 R_{
m y}^2(E) + 0.6 R_{
m z}^2(E)$$

$$R_{\perp}(E) = 0.4 R_{
m x}^2(E) + 0.4 R_{
m y}^2(E) + 0.2 R_{
m z}^2(E)$$

Salient Features

- It gives the TAS without the need to calculate all higher excited states
- It allows a large complete active space configuration expansions
- No need to explicitly build, store, and diagonalize of the Hamiltonian matrix
- The GPU-accelerated implementation allows cost-effective simulation of TAS.

Peng, W.-T.; Fales, B. S.; Levine, B. G., J. Chem. Theory Comput. 2018, 14, 4129-4138.

Salicylideneaniline (SA)

Reaction Coordinates

Non-adiabatic Dynamics Simulations (the pump):

• 2ps AIMS simulations with 360 initial conditions at ωPBEh-CAS(2,2)CI/6-31G**

TD-CASCI Simulations (the probe):

- 84 time slices (each slice 24.2 fs) of 2ps NAMD trajectories
- 80 representative geometries from each slice on S₁ electronic state
- 100 fs TD-CASCI electronic dynamics by applying field along *x*, *y*, *z* axis

Silfies, M. C.; Mehmood, A.; Kowzan, G.; Hohenstein, E. G.; Levine, B. G.; Allison, T. K. *J. Chem. Phys.* **2023**, *159*, 104304. Pijeau, S.; Foster, D.; Hohenstein, E. G. J. Phys. Chem. A **2018**, 122 (25), 5555-5562.

SA Experimental Cavity-Enhanced TAS (CE-TAS)

• Gas phase TAS provides an opportunity to compare with theory as complexity of model is reduced significantly.

3.6 2.7 [Δ*OD*/10⁻⁸ Delay 1.8 0.9 0.0 -0.9 -1.8 ∇ Pump -2.7 500 550 600 650 Wavelength [nm] Probe

Excited State Absorbance

Pump

10.0

Delays [ps] 5.0 2.5

0.0

S,

S₀

Stimulated Emission

Silfies, M. C.; Mehmood, A.; Kowzan, G.; Hohenstein, E. G.; Levine, B. G.; Allison, T. K. J. Chem. Phys. 2023, 159, 104304.

S₀

Simulated TAS of SA

Simulation of TAS Along Different Relaxation Paths

Dynamic Visualization of TAS Evolution on ESIPT Path

Dynamic Visualization of TAS Evolution on Twist Path

1-Hydroxy-2-acetonaphthone (HAN)

Non-adiabatic Dynamics Simulations (the pump):

- 2ps AIMS simulations with 45 initial conditions at FOMO-CAS(10,10)CI/6-31G**
- The proton transfer time (542 fs) and S1 lifetime (1686 fs) are significantly distinct in NAMD which allows the assignment of the components of CE-TAS

TD-CASCI Simulations (the probe):

- 164 time slices (each slice 12.1 fs) of 2ps NAMD trajectories
- 80 representative geometries from each slice on S₁ electronic state
- 100 fs TD-CASCI electronic dynamics by applying field along *x*, *y*, *z* axis

Mehmood, A.; Silfies, M. C.; Durden, S. A.; Allison, T. K. .; Levine, B. G. J. Chem. Phys. submitted.

Simulated TAS of HAN

Simulation of TAS Along Different Relaxation Paths

Dynamic Visualization of TAS on HAN ESIPT Path

Dynamic Visualization of TAS on HAN Twist Path

Conclusions

- The combination of non-adiabatic dynamic simulations such as AIMS, and TD-CASCI provides a power tool to simulate the TAS
- The simulated spectrum can be used to correctly assign the experimental TAS
- Splitting the simulated TAS signal into individual components can provide rich information about excited state chemistry of each competing photochemical path
- The methodology can be used to study the excited state chemical reactions including but not limited to ESIPT and photoisomerization etc.

Acknowledgements

Levine Group

Institute for Advanced Computational Science and Department of Chemistry at Stony Brook University.

Thomas Allison Group (Collaborative)

Department of Chemistry and the Physics Department at Stony Brook University.

NSF Grant Number : CHE-2102319

