Applications of generalized coherent states in Bose-Hubbard model

Yulong Qiao Institute of Theoretical Physics Technische Universität Dresden

April 3, 2024

- 1. Bose-Hubbard model
- 2. Generalized coherent state
- 3. Time-dependent variational principle

Bose-Hubbard model

 $\hat{H} = -J\sum_{\langle i,j\rangle} (a_i^{\dagger}a_j + \text{h.c.}) + \frac{U}{2}\sum_{i=1}^M a_i^{\dagger 2}a_i^2,$

Figure is from Peter Zoller's talk

Bose-Hubbard model

Phase transition of ground state depends on the ratio: $\frac{U}{J}$

for $U/J \to \infty$, $|\text{GS}\rangle = \prod_{i=1}^{M} a_i^{\dagger} |0\rangle = |11 \cdots 1\rangle$ (*M* is equal to number of particles *S*)

for
$$U/J \to 0$$
, $|\text{GS}\rangle = \frac{1}{\sqrt{S!}} \left(\sum_{i=1}^{M} \frac{1}{\sqrt{M}} a_i^{\dagger} \right)^S |00 \cdots 0\rangle = \frac{1}{\sqrt{S!}} \left(b_{p=0}^{\dagger} \right)^S |0\rangle$

Bose-Hubbard model

Phase transition from superfluid to Mott insulator:

M. Greiner, et al., Nature 415, 39-44 (2002)

Generalized coherent state (GCS)

 $|\mathbf{S}, \boldsymbol{\xi}\rangle = \frac{1}{\sqrt{S!}} \left(\sum_{i=1}^{M} \xi_i \hat{a}_i^{\dagger} \right)^{S} |\text{vac}\rangle, \quad \mathbf{S}: \text{ number of particles, M: number of modes/sites}$

 $\boldsymbol{\xi} = \{\xi_1, \xi_2, \cdots, \xi_M\}, \text{ normalization condition: } \sum_{i=1}^M |\xi_i|^2 = 1$

 $\hat{b}^{\dagger} = \sum_{i=1}^{M} \xi_i \hat{a}_i^{\dagger}, |S, \xi\rangle = \frac{1}{\sqrt{S!}} (\hat{b}^{\dagger})^{S} |\text{vac}\rangle$: condensate

Example: $|2, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle = \frac{1}{2} |20\rangle + \frac{1}{\sqrt{2}} |11\rangle + \frac{1}{2} |02\rangle$

P. Buonsante and V. Penna, J. Phys. A: Math. Theor. 41, 175301 (2008)

Relationship between two ground states

$$|11\cdots 1\rangle = \sum_{k=1}^{N} A_k |S, \boldsymbol{\xi}_k\rangle, \ \boldsymbol{N} = 2^{S-1}$$

Simple equation: $x_1x_2 = \frac{1}{4}(x_1 + x_2)^2 - \frac{1}{4}(x_1 - x_2)^2$

general case: $x_1 x_2 \cdots x_M \rightarrow \text{Kan's formula}$

Sinle parameterized state can not describe the phase transtion

R. Kan, J. Multivar. Anal. 99, 542 (2008).

Y. Q, J. Huh and F. Grossmann, SciPost Phys. 15, 007 (2023)

GCS / Glauber coherent state

$$egin{aligned} |ec{lpha}
angle &= \mathrm{e}^{-rac{1}{2}\sum_{i=1}^{M}|lpha_i|^2}\mathrm{e}^{\sum_{i=1}^{M}lpha_i \hat{a}_i^\dagger}|0,0,\cdots,0\ &= \sum_{S=0}^\infty \sqrt{P(S)}|S,ec{\xi}
angle \end{aligned}$$

$$\tilde{N} = \sum_{i=1}^{M} |\alpha_i|^2, \quad P(S) = \mathrm{e}^{-\tilde{N}} \frac{\tilde{N}^S}{S!}$$

Multi-mode Glauber coherent state	generalized coherent state
$ oldsymbol{lpha} angle=\prod_{i=1}^{M}e^{-rac{ oldsymbol{lpha}_i ^2}{2}}e^{oldsymbol{lpha}_ia\hat{a}_i^\dagger} ext{vac} angle=\otimes_{i=1}^{M} oldsymbol{lpha}_i angle$	$ S,m{\xi} angle = rac{1}{\sqrt{S!}} \left(\sum_{i=1}^M m{\xi}_i \hat{a}_i^\dagger ight)^S ext{vac} angle$
$a_i oldsymbol{lpha} angle = oldsymbol{lpha}_i oldsymbol{lpha} angle$	$\hat{a}_i S,oldsymbol{\xi} angle=\sqrt{S}oldsymbol{\xi}_i S-1,oldsymbol{\xi} angle$
$\langle oldsymbol lpha \hat{a}_i^\dagger a_j oldsymbol lpha angle = oldsymbol lpha_i^st oldsymbol lpha_j$	$\langle S, oldsymbol{\xi} \hat{a}_i^{\dagger} \hat{a}_j S, oldsymbol{\xi} angle = S oldsymbol{\xi}_i^* oldsymbol{\xi}_j$
$\langle \boldsymbol{\alpha} \boldsymbol{\beta} \rangle = \exp \left[\sum_{i=1}^{M} \alpha_i^* \beta_i - \frac{1}{2} (\alpha_i ^2 + \beta_i ^2) \right]$	$\langle S', oldsymbol{\xi} S, oldsymbol{\eta} angle = \left(\sum_{i=1}^M oldsymbol{\xi}_i^* oldsymbol{\eta}_i ight)^S oldsymbol{\delta}_{S,S'}$
overcomplete in whole Hilbert space	overcomplete in S-particle subspace

Time-dependent variational principle

Initial state: $|\psi(t=0)\rangle = |S,\xi\rangle$

ansatz: $|\psi(t)\rangle = \sum_{k=1}^{N} A_k(t) |S, \xi_k(t)\rangle$, N: multiplicity.

• GCS serve as overcomplete bases

•
$$N = 1$$
: $i\dot{\xi}_i = -J(\xi_{i+1} + \xi_{i-1}) + U(S-1)|\xi_i|^2\xi_i$

• N > 1 is beyond mean-field result if $\langle S, \boldsymbol{\xi}_k | S, \boldsymbol{\xi}_{k'} \rangle \neq 0$

Y. Q and F. Grossmann, Phys.Rev.A 103, 042209 (2021)

Time-dependent variational principle

Parameterized ansatz: $|\psi(\mathbf{x})\rangle = |\psi(x_1, x_2, \cdots, x_M)\rangle$, $\mathbf{x} = \{A, \xi\}$

Schrodinger equation: $\partial_t |\psi(\mathbf{x})\rangle \approx -i\hat{H}|\psi(x)\rangle$

Left side: $\partial_t |\psi(\mathbf{x})\rangle = \dot{x}^{\nu} |V_{\nu}\rangle, |V_{\nu}\rangle = \partial_{x_{\nu}} |\psi\rangle$

Right side: $-i\hat{H}|\psi(x)\rangle$

Best approximation: $\langle V_{\mu}|V_{\nu}\rangle\dot{x}^{\nu} = -i\langle V_{\mu}|\hat{H}|\psi(x)\rangle$

L. Hackl, et al., SciPost Phys. 9, 048 (2020).

Nonequilibrium dynamics

Two-site mode:

$$H = -J(t)(\hat{a}_1^{\dagger}\hat{a}_2 + \hat{a}_2^{\dagger}\hat{a}_1) + \frac{U}{2}(\hat{a}_1^{\dagger 2}\hat{a}_1^2 + \hat{a}_2^{\dagger 2}\hat{a}_2^2), \ J(t) = J_0 + J_1\cos(\omega t)$$

initial state: $|S = 50, \xi_1 = -\sqrt{0.7}, \xi_2 = \sqrt{0.3}\rangle$

Nonequilibrium dynamics

Considering initial state: $|\vec{\alpha}\rangle = |\sqrt{20}, 0, \sqrt{20}, 0\rangle$ with $\tilde{N} = 40$, if J = 0, $T = \frac{2\pi}{U}$ $F(t) = |\langle \vec{\alpha} | e^{-i\hat{H}t} | \vec{\alpha} \rangle|$, S. Tomsovic, et al, Phys.Rev.A, 2018, 97(6)

Nonequilibrium dynamics

Accumulated error: $E = \int_0^t \mathrm{d}\tau |F_{\mathrm{GCS}}(\tau) - F_{\mathrm{exact}}(\tau)|$

Linear combination of GCS for

1. Extended BH model/time-dependent Hamiltonian/...

2. Scrambling of quantum information (OTOC)

3. Fermi systems