

dr.dral.com

Towards more accessible excited-state simulations with AI

Pavlo O. Dral

MLatom@XACS, Xiamen University

Virtual International Seminar on Theory Advancement" (VISTA) 20 March 2024

Group & Acknowledgements

dr-dral.com

Hiring post-docs, PhD & MSc students!

Funding

16 subjects rank top 1% globally. 11th in Mainland China.

Chemistry ranks top 1%0 globally (ESI as of March 2019).

Develop AI methods and concepts to break the limitations of traditional quantum chemistry

Provide tools

EDITED BY PAVLO O. DRAL

QUANTUM CHEMISTRY IN THE AGE OF MACHINE LEARNING

Published in September 2022

hapte	er	Title	K PY
		Preface	
art 1		Introduction	
	1	Very brief introduction to quantum chemistry	
	2	Density functional theory	MLatom.com
	3	Semiempirical quantum mechanical methods	
	4	From small molecules to solid-state materials: A brief discourse on an example of carbon compounds	
	5	Basics of dynamics	
	6	Machine learning: An overview	
	7	Unsupervised learning	
	8	Neural networks	
	9	Kernel methods	
	10	Bayesian inference	
art 2		Machine learning potentials	
	11	Potentials based on linear models	
	12	Neural network potentials	
	13	Kernel method potentials	
	14	Constructing machine learning potentials with active learning	
	15	Excited-state dynamics with machine learning	65
	16	Machine learning for vibrational spectroscopy	
	17	Molecular structure optimizations with Gaussian process	authors!
art 3		Machine learning of quantum chemical properties	
	18	Learning electron densities	
	19	Learning dipole moments and polarizabilities	Evorcicoc
	20	Learning excited-state properties	EXELUSES
art 4		Machine learning-improved quantum chemical methods	
	21	Learning from multiple quantum chemical methods: Δ-learning, transfer learning, co-kriging, and beyond	on Githud
	22	Data-driven acceleration of coupled-cluster and perturbation theory methods	
	23	Redesigning density functional theory with machine learning	
	24	Improving semiempirical quantum mechanical methods with machine learning	
	25	Machine learning wavefunction	•
art 5		Analysis of Big Data	ont
	26	Analysis of nonadiabatic molecular dynamics trajectories	
	27	Design of organic materials with tailored optical properties: Predicting quantum-chemical polarizabilities and derived quantities	dr.dra.6

Quantum chemistry approximations

Why excited states are challenging

dral.com

Why excited states are challenging

Why excited states are challenging

dr.dral.com

Conventional programming in quantum chemistry:

- Code for molecular orbitals
- Code for excitation energies
- Code for oscillator strengths

N QM calculations are needed to simulate spectrum

dr.dral.com

N QM calculations are needed to simulate spectrum

With ML, only M << N QM calculations are needed

٠

ML-nuclear ensemble approach (ML-NEA)

The KREG model

P. O. Dral, A. Owens, S. Yurchenko, W. Thiel, J. Chem. Phys. 2017, 146, 244108

Machine learning single-photon absorption spectra

XACS

Kiamen Atomistic Computing Suite XACScloud.com

ML-NEA method: B.-X. Xue, P. O. Dral, M. Barbatti, J. Phys. Chem. A 2020, 124, 7199–7210 Implementation in MLatom: P. O. Dral, F. Ge, B.-X. Xue, Y.-F. Hou, M. Pinheiro Jr, J. Huang, M. Barbatti, Top. Curr. Chem., **2021**, 379, 27

High-precision spectra of benzene

dral.com

20

Black-box implementation into MLatom

dr-dral.com

Black-box implementation into MLatom

MLatom: Program for AI-enhanced computational chemistry

XACS

liamen Atomistic Computing Suite XACScloud.com

24

Y. Dai, Y. Chen, S. Zhang, L. Zhang, A. Ullah, Q. Zhang, Y. Ou. J. Chem. Theory Comput. 2024, 20, 1193

Implementation and use

Open source

* 'V3' marks implementations released in MLatom 3

Cloud computing (free for academics!)

GÅMESS

ORCA

MNDO

Dynamics and other atomistic simulation:

hyperopt

XMVB XEDA MLatom

Cloud computing (free!)

Ab initio valence bond calculations
 (VBSCF, VBCI, BOVB, ...)

- Generalized Kohn–Sham energy decomposition analysis (GKS-EDA)
- Artificial intelligence-enhanced quantum mechanical method 1 (AIQM1, faster and more accurate than B3LYP)
- Fast geometry optimization, MD, thermochemistry
- ... and much more

Principal investigators (Xiamen University)

- Wei Wu
- Peifeng Su
- Pavlo O. Dral

Partners

- Mario Barbatti, Aix Marseille University
- Benoît Braïda, Sorbonne Université
- Philippe Hiberty, University of Paris-Saclay
- Olexandr Isayev, Carnegie Mellon University
- Yirong Mo, UNC Greensboro
- Sason Shaik, Hebrew University
- Avital Shurki, Hebrew University
- Cheng Wang, Xiamen University

MLatom: Program for AI-enhanced computational chemistry

28

.dral.com P. O. Dral, F. Ge, Y.-F. Hou, P. Zheng, Y. Chen, M. Barbatti, O. Isayev, C. Wang, B.-X. Xue, M. Pinheiro Jr, Y. Su, Y. Dai, Y. Chen, S. Zhang, L. Zhang, A. Ullah, Q. Zhang, Y. Ou. J. Chem. Theory Comput. 2024, 20, 1193 🞸

ML two-photon absorption

Two-photon absorption applications:

- two-photon lithography
- Photodynamic therapy
- Bioimaging
- 3D printing
- Upconverted laser

Here we show how to calculate TPA cross section for RHODAMINE 6G and RHODAMINE 123 molecules with MLatom input file mltpa.inp:

XACS

This input requires Smiles.csv file with SMILES of molecules:

CCNC1=CC2=C(C=C1C)C(=C3C=C(C(=[NH+]CC)C=C302)C)C4=CC=CC=C4C(=0)0CC.[Cl-] C0C(=0)C1=CC=CC=C1C2=C3C=CC(=N)C=C30C4=C2C=CC(=C4)N.Cl

Yuming Su

Zhou Da

Y. Su, Y. Dai, Y. Zeng, ..., P. Zheng, D. Zhou, P. O. Dral, C. Wang. Adv. Sci. 2023, 2204902

Machine learning in chemistry

Surface Hopping

J. C. Tully, J. Chem. Phys. 1990, 93, 1061 R. Crespo-Otero and M. Barbatti, Chem. Rev. 2018, 118, 7026

Typical nonadiabatic excited-state simulations:

- 100 trajectories
- for 1 ps = 1000 fs
- 0.5 fs time step

Number of QM calculations:

- 2000 per trajectory
- 200 000 in total

P. O. Dral, M. Barbatti, W. Thiel, J. Phys. Chem. Lett. 2018, 9, 5660

Why ML-TSH is challenging

MLatom.com

dr-dral.com

 NH_2

P. O. Dral, M. Barbatti, W. Thiel, J. Phys. Chem. Lett. 2018, 9, 5660

P. O. Dral, M. Barbatti, W. Thiel, J. Phys. Chem. Lett. 2018, 9, 5660

MLatom.com

36

P. O. Dral, M. Barbatti, W. Thiel, J. Phys. Chem. Lett. 2018, 9, 5660

P. O. Dral, M. Barbatti, W. Thiel, J. Phys. Chem. Lett. 2018, 9, 5660

W.-K. Chen, X.-Y. Liu, W. Fang, P. O. Dral, G. Cui, J. Phys. Chem. Lett. 2018, 9, 670

S. V. Pios, M. F. Gelin, A. Ullah, P. O. Dral*, L. Chen*, J. Phys. Chem. Lett. 2024, 15, 2325

2D spectra – AI-accelerated simulations

S. V. Pios, M. F. Gelin, A. Ullah, P. O. Dral*, L. Chen*, J. Phys. Chem. Lett. 2024, 15, 2325

dr.dral.com

Molecule: CNH₄+

Reference: SA-3-CASSCF(12,8)/ 6-31G(d)

ML: ANI-type, trained on ca. 2500 points.

(back-hoppings prevented)

Zoo of machine learning potentials

XACS

Xiamen Atomistic Computing Suite XACScloud.com

dr-dral.com

XACS Ximmen Atomistic Computing Suite XACScloud.com XACS

Research System: CH₂NH₂⁺ Number of Electrons: 16 **TSH Package:** MLatom **QC Calculation Package:** Columbus Reference Method: SA-3-CASSCF(12,8)/6-31G(d)+LZ Prediction Method: AIQM1(GUGA-CI)+LZ AIQM1 GUGA-CI Active Space: Orb7-Orb9 (4,3)

(small, ultrafast dynamics, classical photochemistry model system)

Time (fs)

90

1.00 5 Occ 1 Occ 2 Occ 3 Occ 4 Occ lz pureQC_100Trajs_noprev-pop.txt-S0 pureOC 100Trajs noprev-pop.txt-S1 0.75 Population: 05.0 6 Occ 10 Unocc 0.25 0.00 0 10 20 30

														AN COMPANY
Xiamen	Atomistic data set	00M2	B3LYP/	ωB97X/	ωB97X-D/	ωB97X/	ωB97X-D4/	ANI-	AIQM1	AIQM1	AIOM1	CCSD(T)*	M COO	
XACSclo	oud.com	ODIVI2	6-31G*	6-31G*	6-31G*	def2-TZVPP	def2-TZVPP	1ccx	@DFT*	@DFT	AlQMI	/CBS	ML atom com	FRSITAS AMOLE
					(energies, kcal/n	nol						WLatom.com	
	CHNO	2.64	6.71	4.10	3.84	3.21	2.76	—	2.49	2.12	0.87	—		
	G3/99	3.04	8.53	3.46	3.22	4.18	3.20	—	2.83	2.06	0.88	—		
	ISOMERS44 (ΔH_f)	1.16	8.08	3.57	3.53	4.52	3.78	—	3.00	2.27	0.42	—		
	ISOMERS44 (ΔH_r)	0.70	2.29	1.45	1.31	1.19	1.10	1.68	0.95	0.89	0.50	—		
	IsoL6/11	1.48	5.26	3.83	3.36	1.75	1.64	1.46	1.65	1.55	0.62	0.47		
	HC7/11	5.37	6.44	16.90	13.98	6.83	7.10	2.53	8.89	9.16	1.43	1.57		

Ground-state properties of neutral, closed-shell compounds

(heats of formation, reaction enthalpies, and ZPVE-exclusive reaction energies)

							_				
Torsion	0.74	0.55	0.30	0.29	0.20	0.19	0.23	0.23	0.23	0.19	0.05
	bond lengths, Å										
CHNO	0.015	0.006	0.008	0.007	0.010	0.010	0.011	0.010	0.010	0.007	—
MGHBL9	0.023	0.007	0.006	0.005	0.002	0.002	0.047	0.011	0.011	0.004	—
MGNHBL11	0.026	0.006	0.003	0.002	0.008	0.008	0.004	0.008	0.008	0.002	_
	bond angles, °										
CHNO	2.04	0.70	0.68	0.64	0.68	0.68	1.00	0.77	0.77	0.70	—
dihedral angles, °											
CHNO	4.07	5.20	4.68	6.10	7.12	7.11	5.86	2.14	2.14	2.31	—
	-				-	-			-	-	-

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, Nat. Commun. 2021, 12, 7022

Excited states with AIQM1/MRCI

P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, P. O. Dral, Nat. Commun. 2021, 12, 7022

XACS Xiamen Atomistic Computing Suite XACScloud.com XACS

C60 and C70 at

AIQM1 also predicts fluorescence quenching	Table S9. Emission energy and oscillator strengths f of free molecules and their complexes with AIQM1/CIS in vacuum (S_1 to S_0 transition).						
	Species	f	Energy (eV)				
	3	0.750	3.11				
	4	0.751	3.12				
	5	0.750	3.12				
	6	0.750	3.12				
	7	0.748	3.12				
	3 ⊃ C ₆₀	0.000	2.58				
	$4 \supset C_{60}$	0.000	2.58				
	$5 \supset C_{60}$	0.000	2.58				
CPP-R···C ₆₀	$6 \supset \mathbf{C}_{60}$	0.000	2.58				
	$7 \supset C_{60}$	0.000	2.59				
	M-3⊃ C ₇₀	0.000	2.10				
	$M-4 \supset C_{70}$	0.000	2.09				
	M-5 ⊃ C ₇₀	0.000	2.10				
	M-6 ⊃ C ₇₀	0.000	2.10				
	M-7 ⊃ C70	0 000	2 10				

AIQM1 can be useful for aggregation-induced emission, photocatalysis

T. A. Schaub, A. Zieleniewska, R. Kaur, M. Minameyer, W. Yang, C. M. Schüßlbauer, L. Zhang, M. Freiberger, L. N. Zakharov, T. Drewello, P. O. Dral, D. Guldi, R. Jasti. Tunable Macrocyclic Polyparaphenylene Nanolassos via Copper-Free Click Chemistry. *Chem. Eur. J.* **2023**, *29*, e202300668

XACS Xiamen Atomistic Computing Suite XACScloud.com Xacscloud.com XACS

dr-dral.com

B. F. E. Curchod, T. J. Martínez, *Chem. Rev.* **2018**, *118*, 3305

- Treat both nuclei and electrons quantum mechanically
- Treat the system and environment
- Computationally fast enough for real systems

$$\widehat{H} = \widehat{H}_{S} + \widehat{H}_{env} + \widehat{H}_{S-env}[+\widehat{H}_{reorg}]$$

- \hat{H}_{S} Hamiltonian of the system
- \hat{H}_{env} Hamiltonian of environment (bath)
- \hat{H}_{S-env} Hamiltonian of system-environment (system-bath) interaction

Quantum dynamics of open systems

• \widehat{H}_{reorg} the reorganization terms

$$\frac{d}{dt}\boldsymbol{\rho}(t) = \frac{i}{\hbar} \left[\widehat{H}, \boldsymbol{\rho}(t) \right]$$

Different integrators of Liouville–von Neumann equation, ρ – the density matrix

- hierarchical equations of motion (HEOM)
- the local thermalising Linblad master equation (LTLME)

dynamics

- $\boldsymbol{\rho}(t) = f[\boldsymbol{\rho}(t \Delta t)]$
- dynamics propagation is
- computationally expensive

Inspired by: L. E. Herrera Rodriguez, A. A. Kananenka. Convolutional Neural Networks for Long Time Dissipative Quantum Dynamics. *J. Phys. Chem. Lett.* **2021**, *12*, 2476–2483

KACS iamen Atomistic ACScloud.com Machine learning to speed up dynamics

Spin-boson Hamiltonian: $\widehat{H} = \frac{1}{2}\varepsilon\widehat{\sigma}_{z} + \frac{1}{2}\Delta\widehat{\sigma}_{x} + \sum_{k}\omega_{k}\widehat{b}_{k}^{\dagger}\widehat{b}_{k} + \widehat{\sigma}_{z}\sum_{k}c_{k}(\widehat{b}_{k}^{\dagger} + \widehat{b}_{k})$

A. Ullah, P. O. Dral. Speeding up quantum dissipative dynamics of open systems with kernel methods. *New J. Phys.* **2021**, *23*, 113019

MLatom.com

Machine learning to speed up dynamics

Test (unseen) trajectories for parameters not used in training trajectories

A. Ullah, P. O. Dral. New J. Phys. 2021, 23, 113019

XACS

Computing Suite

Machine learning to speed up dynamics

dral.com

$$\boldsymbol{\rho}(t) = f^{\mathrm{ML}}[\rho(t - \Delta t)]$$

Many ways to do it:

(ACS

- different algorithms
- different properties to learn (ρ or population)
- different systems, data sets...

- L. E. Herrera Rodriguez, A. A. Kananenka. Convolutional Neural Networks for Long Time Dissipative Quantum Dynamics. J. Phys. Chem. Lett. 2021, 12, 2476–2483
- K. Lin, J. Peng, F. L. Gu, Z. Lan. Simulation of Open Quantum Dynamics with Bootstrap-Based Long Short-Term Memory Recurrent Neural Network. J. Phys. Chem. Lett. 2021, 12, 10225–10234
- A. Ullah, P. O. Dral. Speeding up quantum dissipative dynamics of open systems with **kernel methods**. *New J. Phys.* **2021**, *23*, 113019

Good ML method for quantum dynamics?

Good ML method for quantum dynamics?

Can we do better?

- dynamics propagation is
- computationally expensive
- recursive (iterative)

Can we do better?

- dynamics propagation is
- computationally expensive
- recursive (iterative)
- $\rho(t) = f[t; other parameters]$

XACS AI-QD (artificial intelligence-based quantum dynamics) MLatom.con γ = characteristic frequency $\lambda = \text{reorganization energy } \rho(\text{time}) = f[\text{time}; \text{simulation parameters}]$ T = temperature**PDB code: 3ENI** population ρ_{nn} 0.8 γ, λ, Τ pico-second watch 0.5 1.5 2 2.5

7-sites Fenna-Matthews-Olson (FMO) complex

2.5ps

Dots: Reference Line: AI-QD

63

time (ps)

A. Ullah, P. O. Dral. Predicting the future of excitation energy transfer in light-harvesting complex with artificial intelligence-based quantum dynamics. *Nat. Commun.* **2022**, *13*, 1930

AI-QD vs reference trajectories

Test (unseen) trajectories for parameters not used in training trajectories

MLatom.com

Predictions of 0.57M trajectories up to 1 ns $\,$

A. Ullah, P. O. Dral. Nat. Commun. 2022, 13, 1930

Can we do even better?

- dynamics propagation is
- computationally expensive
- recursive (iterative)

One-Shot Trajectory Learning (OSTL)

66

10 ps long dynamics in just 70 ms

good for massive simulation in parameter space

A. Ullah, P. O. Dral. J. Phys. Chem. Lett. 2022, 6037

(ACS

(ACScloud.com

-dral.com

67

The direct learning of molecular dynamics with 4D-spacetime GICnet models

Very fast, e.g., 1 ps trajectory (time step 0.05 fs) within 1 minute

Fuchun Ge

F. Ge, L. Zhang, Y.-F. Hou, Y. Chen, A. Ullah, P. O. Dral. J. Phys. Chem. Lett. 2023, 14, 7732

CALL FOR PAPERS

Artificial Intelligence Chemistry Open for Submissions

Organizer: Konstantinos Vogiatzis, University of Tennessee, US

3rd International Symposium on Machine Learning in Quantum Chemistry (SMLQC)

University of Tennessee, Knoxville Fall 2025 Dates TBD