Electron and energy transfer dynamics in light harvesting systems

Thomas P. Fay & David Limmer Department of Chemistry, University of California, Berkeley

Electron transfer in photosynthesis

Electron transfer in photosynthesis

Phenomenological Lindblad treatment of loss processes is not accurate

Photoprotection (non-photochemical quenching NPQ)

Excitation energy transfer (EET)

Electron transfer

A SAL SA

2

Photoprotection is essential for life

Excess light damages organisms

Real-time adaptive non-photochemical quenching (NPQ)

Photoprotection controls crop yields

Modification of NPQ related genes

De Souza, A. P. et al. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science (80-.). 377, 851–854 (2022).

30% higher crop yields

Molecular actors in NPQ

Specific light-harvesting proteins + carotenoids control NPQ

Organism can activate and deactivate non-photochemical quenching (NPQ)

Short, A., Fay, T.P., Crisanto, T. *et al.* Kinetics of the xanthophyll cycle and its role in photoprotective memory and response. *Nat Commun* **14**, 6621 (2023).

LHCII plays a role in NPQ in plants

Cupellini, L., Calvani, D., Jacquemin, D. & Mennucci, B. Nat. Commun. 11, 662 (2020).

Lutein in LHCII

Charge transfer quenching with carotenoids

Chla 612

How can we model the coupled excitation energy transfer dynamics and charge transfer quenching?

Park, S. et al. Proc. Natl. Acad. Sci. 116, 3385–3390 (2019).

Energy dissipated as heat

Charge transfer quenching with carotenoids

Carotenoids (e.g. lutein) act as quenchers via charge transfer

How can we model the **coupled excitation energy transfer dynamics** and **charge transfer quenching**?

Park, S. et al. Proc. Natl. Acad. Sci. 116, 3385–3390 (2019).

Energy transfer

Chla 612

Energy dissipated as heat

8

Energy transfer vs electron transfer

Coupling between excited states mediated by electrostatics

Excitation energy transfer (EET)

Weak coupling to molecular environment

Energy transfer vs electron transfer

Coupling between states mediated by orbital overlap

Electron/charge transfer (CT)

Strong coupling to molecular environment

Hybrid (strong-coupling) method

Open system of interest: system+bath

Charge transfer

Perturbative treatment of loss processes fully accounting for non-Markovian open system dynamics

Non-radiative decay

11

LHCII plays a role in NPQ in plants

How can we model the coupled excitation energy transfer dynamics and charge transfer quenching?

Cupellini, L., Calvani, D., Jacquemin, D. & Mennucci, B. Nat. Commun. **11**, 662 (2020).

12

Exciton quenching

How do we describe excitation energy transfer dynamics?

Locally excited (LE) states

Local excitations couple to each other (dipole-dipole Locally excited (LE) states interaction) forming delocalised excitons

Coupling to vibrations on the chromophore **Reorganisation energy:**

Local excitations couple to each other (dipole-dipole interaction) forming delocalised excitons

Coupling to vibrations on the chromophore **Reorganisation energy:**

Excitons in protein-pigment complexes

17

Excitation energy transport

Approximate theories

Förster theory (hopping)

Redfield theory (coherent transport)

Exact non-markovian/non-perturbative quantum dynamics approach Hierarchical equation of motion (HEOM)

Exciton transport with HEOM

Large reorganisation energies

Tanimura, Y. & Kubo, R. J. Phys. Soc. Japan 58, 101–114 (1989).

Hierarchical equations of motion (HEOM)

Exciton quenching

How do model charge transfer quenching efficiently?

Coupled charge and energy transfer dynamics in light harvesting complexes from a hybrid hierarchical equations of motion approach

Cite as: J. Chem. Phys. 157, 174104 (2022); https://doi.org/10.1063/5.0117659 Submitted: 01 August 2022 • Accepted: 13 October 2022 • Accepted Manuscript Online: 13 October 2022 • Published Online: 01 November 2022

问 Thomas P. Fay and 问 David T. Limmer

TPF and D.T. Limmer, J. Chem. Phys. 157, 174104 (2022).

Chla 612 Chla 611 Lut1

TPF and D.T. Limmer, *J. Chem. Phys.* **157**, 174104 (2022).

No harmonic/linear-coupling/sep arability approximation

Q

bath

Polarisation bath

bath

CT is intractable with HEOM

Intractable calculation with HEOM

Develop a hybrid HEOM method

table with EOM.

Hybrid HEOM method

Treat this partition with **HEOM**

Polarisation bath

Hybrid HEOM method

Treat this partition with perturbation theory

Strong coupling QME

M. Sparpaglione and S. Mukamel, J. Chem. Phys. 88, 3263 (1988). TPF, L.P. Lindoy, and D.E. Manolopoulos, J. Chem. Phys. 149, 064107 (2018). A. Trushechkin, Phys. Rev. A 106, 042209 (2022).

Strong system-bath coupling

Nakajima-Zwanzig equation

Markovian approximation for kernel in the Nakajima-Zwanzig equation (ONLY for CT processes)

Hybrid HEOM Method

Strong coupling Zwanzig projection on full **HEOM**

Two coupled hierarchies of ADOs

Hybrid HEOM Method

CT coupling: selective population decay and perturbed exciton dynamics Lindblad form in certain limits

Hybrid HEOM method

Matlab code available at <u>github.com/tomfay/heom-lab</u>

Hybrid HEOM method

Complete set of auxiliary density operators

Project out strongly coupled baths

Perturbation theory expansion of Nakajima-Zwanzig kernel

Efficient propagation and truncation of HEOM

TPF, A simple improved low temperature correction for the hierarchical equations of motion. J. Chem. Phys. 014101, (2022).

New low temperature correction + specialised propagation algorithm

Hybrid HEOM method

Benchmark results for a dimer of Chl coupled to a CT quencher

How do exciton dynamics affect CT quenching in LHCII?

Multiple coupled Chla and Chlb

Cupellini, L., Calvani, D., Jacquemin, D. & Mennucci, B. Nat. Commun. 11, 662 (2020).

Radiative +NR + CT decay pathways

Populations of different chlorophyll (LE) excited states

Initial excitation on a612 Chla 612

Quantum coherence between a611/a612 excitations

Mixture of coherent and incoherent transport

41

Different exciton Hamiltonians for LHCII predict different **excitation lifetimes**

Arises due to **different energies** of a611/a612 excitations

(No quantum coherence)

Comparison to QUAPI, ACE, TEMPO...?

