Quantum Chemistry on a Quantum Computer

Artur Izmaylov
UNIVERSITY OF

New hope: Digital quantum computers

$$
\begin{gathered}
\hat{H}_{e}(\mathbf{R})\left|\Phi_{j}(\mathbf{R})\right\rangle=E_{j}(\mathbf{R})\left|\Phi_{j}(\mathbf{R})\right\rangle \\
\left|\Phi_{j}(\mathbf{R})\right\rangle=\sum_{\bar{n}}^{2^{N_{o}}} C_{\bar{n}, j}\left|n_{1}, n_{2}, \ldots n_{N_{o}}\right\rangle, n_{i}=\{0,1\}
\end{gathered}
$$

For $\mid \Psi>$: occupations to qubit orientations

$$
|1| 00\rangle \quad \rightarrow \quad \mid \uparrow \uparrow \downarrow \downarrow>
$$

Entanglement

$$
|\Psi>=\alpha| \uparrow \uparrow>+\beta|\downarrow \uparrow>+\gamma| \uparrow \downarrow>+\delta \mid \downarrow \downarrow>
$$

N qubits can store 2^{N} complex numbers

Quantum Algorithms

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical...

$$
\begin{aligned}
& \text { |answer>= U|question> } \\
& U=U_{1} \ldots U_{n}
\end{aligned}
$$

... and by golly it's a wonderful problem, because it doesn't look so easy."

Quantum Computers: What can they do?

Short answer: not much (in spite of all the hype)

IBM 433Q

$$
\begin{aligned}
& \text { |answer>= U|question> } \\
& U=U_{1} \ldots U_{n}
\end{aligned}
$$

Error correction is needed

Google 72Q

Error correction: I-IOK qubits for I "corrected qubit" ~ I M qubits
Expectations: hardware will come, develop algorithms for quantum advantage
Another possibility: quantum inspired methods for classical computers
Quantum Sci. Technol. 6 (2021) 024012

Quantum Advantage in Quantum Chemistry

Classical heuristics: inaccurate (DFT) or expensive (DMRG, MRCI, stochastic methods,...)

Chemical space:
-Catalysts

- OLEDs

Quantum methods:

- What makes system "quantum easy"?
Different algorithms different complexities

Quantum Phase Estimation

$$
\begin{aligned}
& \hat{H}\left|\phi_{n}\right\rangle=E_{n}\left|\phi_{n}\right\rangle \\
& |\psi\rangle=\sum_{n} c_{n}\left|\phi_{n}\right\rangle
\end{aligned}
$$

$$
\int\left\langle\psi e^{-i \hat{H} t} \mid \psi\right\rangle e^{i \omega t} \mathrm{~d} t=\sum_{n}\left|c_{n}\right|^{2} \delta\left(E_{n}-\omega\right)
$$

QI: How to prepare the initial state?
Q2: How to propagate?

Outline

$$
\int\langle\psi| e^{-i \hat{H} t}|\psi\rangle e^{i \omega t} \mathrm{~d} t=\sum_{n}\left|c_{n}\right|^{2} \delta\left(E_{n}-\omega\right)
$$

- Variational Quantum Eigensolver (near-term / quantum inspired)
- State preparation: Qubit Coupled Cluster ansatz
- Measurement
- Quantum Phase Estimation (assuming error correction)
- Trotterization (cost $\sim \mathrm{t}^{2}$)
- Linear Combination of Unitaries (cost ~ t)

Fermion-qubit mapping

$$
\hat{H}_{e}=\sum_{p q} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}+\sum_{p q r s} g_{p q, r s} \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s}
$$

Polynomial scaling of \# of integrals with system size is another reason to use quantum computing

$$
\hat{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Jordan-Wigner (I 928):

$$
\begin{array}{ll}
\hat{a}_{j} \rightarrow\left(\hat{x}_{j}-i \hat{y}_{j}\right) \otimes \hat{z}_{j-1} \cdots \otimes \hat{z}_{1} & \hat{y}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \\
\hat{a}_{j}^{\dagger} \rightarrow\left(\hat{x}_{j}+i \hat{y}_{j}\right) \otimes \hat{z}_{j-1} \cdots \otimes \hat{z}_{1} & \hat{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{array}
$$

Iso-spectral to H_{e} qubit-Hamiltonian:

$$
\hat{H}_{q}=\sum_{k} c_{k} \hat{P}_{k}, \quad \hat{P}_{k}=\prod_{i} \hat{\sigma}_{i}, \quad \hat{\sigma}_{i}=\left\{\hat{x}_{i}, \hat{y}_{i}, \hat{z}_{i}\right\}
$$

I. Variational Quantum Eigensolver
 $$
\left.\mathrm{E}_{\mathrm{e}}=\min <0\left|\mathrm{U}(\theta)^{\prime} \mathrm{H}_{\mathrm{q}} \mathrm{U}(\theta)\right| 0\right\rangle
$$
 θ

A. Anand et al. Chem. Soc. Rev. 51, 1659 (20̄2̄2)
T.C. Yen et al. npj Quant. Inf. 9, 14 (2023) Hq $|0\rangle \quad U(\theta) \mid 0>\quad$ measurements
classical computer
$\min _{\theta}\langle 0| U(\theta){ }^{\prime} H_{q} U(\theta) \mid 0>$

I.I State preparation

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{e}} \mid \Phi_{\mathrm{e}}>\text { (fermions) } \rightarrow \mathrm{U}_{\mathrm{q}} \mid \Phi_{\mathrm{q}}>(\text { qubits }) \rightarrow \text { Sequence of gates } \mid 0> \\
& \text { (hardware-efficient) }
\end{aligned}
$$

Which X's and in what order?

$$
\mathrm{H}=\mathrm{H}_{0}+\mathrm{V}: \quad 1
$$

$\left[\hat{H}_{0}, \hat{A}_{ \pm}\right]=\lambda_{ \pm} \hat{A}_{ \pm}$ raising/lowering

Energy gradient wrt X's amplitude (θ): $\left.\quad \frac{d}{d \theta}\langle\Phi| e^{-\theta \hat{X}} \hat{H} e^{\theta \hat{X}}|\Phi\rangle\right|_{\theta=0}=\langle\Phi|[\hat{H}, \hat{X}]|\Phi\rangle$

Fermionic and Qubit Algebras

$$
\hat{U}(\bar{\theta})=\prod_{k} e^{\theta_{k} \hat{X}_{k}}, \hat{X}_{k}^{\dagger}=-\hat{X}_{k}
$$

Fermionic algebra
$\mid \Phi_{\mathrm{e}}>$ Hartree-Fock
$\hat{X}_{k}=\hat{a}_{a}^{\dagger} \hat{a}_{i}-\hat{a}_{i}^{\dagger} \hat{a}_{a}, \hat{a}_{a}^{\dagger} \hat{a}_{b}^{\dagger} \hat{a}_{i} \hat{a}_{j}-\hat{a}_{j}^{\dagger} \hat{a}_{i}^{\dagger} \hat{a}_{b} \hat{a}_{a}, \ldots$

Methods: UCC, ADAPT-VQE, GUCC...

Qubit algebra
$\left|\Phi_{q}\right\rangle$ simple product state

Methods: QCC, Qubit-ADAPT,...
Ryabinkin et al. JCTC I6, IO55 (2020)

Two-qubit gate count: QCC vs UCCSD

1312

,

$$
\hat{X}_{k}=\hat{a}_{a}^{\dagger} \hat{a}_{i}-\hat{a}_{i}^{\dagger} \hat{a}_{a}, \hat{a}_{a}^{\dagger} \hat{a}_{b}^{\dagger} \hat{a}_{i} \hat{a}_{j}-\hat{a}_{j}^{\dagger} \hat{a}_{i}^{\dagger} \hat{a}_{b} \hat{a}_{a}
$$

2.Unitary evolution

$$
\begin{aligned}
& \hat{H}\left|\phi_{n}\right\rangle=E_{n}\left|\phi_{n}\right\rangle \\
& |\psi\rangle=\sum_{n} c_{n}\left|\phi_{n}\right\rangle \\
& \int \frac{\langle\psi| e^{-i \hat{H} t}|\psi\rangle}{\uparrow} \frac{e^{i \omega t} d t}{\uparrow}=\sum_{n}\left|c_{n}\right|^{2} \delta\left(E_{n}-\omega\right)
\end{aligned}
$$

Unitaries! Can be done on a quantum computer

2.I Trotterization

$$
e^{-i t \hat{H}}=e^{-i t \sum_{n} \hat{H}_{n}}=\lim _{K \rightarrow \infty}\left(\prod_{n} e^{-i \frac{t}{K} \hat{H}_{n}}\right)^{K}
$$

H_{n} Hamiltonians: easy to bring to the diagonal form

$$
\hat{H}_{n}=\hat{U}_{n}^{\dagger} \hat{Z}_{n} \hat{U}_{n} \quad e^{-i t \hat{H}_{n}}=\hat{U}_{n}^{\dagger} e^{-i t \hat{Z}_{n}} \hat{U}_{n}
$$

Diagonal:

$$
\begin{array}{lr}
\hat{Z}_{n}=\sum_{i} a_{i} \hat{z}_{i}+\sum_{i j} b_{i j} \hat{z}_{i} \hat{z}_{j}+\ldots & \text { qubits } \\
\hat{Z}_{n}=\sum_{i} c_{i} \hat{n}_{i}+\sum_{i j} d_{i j} \hat{n}_{i} \hat{n}_{j}+\ldots & \begin{array}{c}
\text { fermions } \\
\hat{n}_{i}=\hat{a}_{i}^{\dagger} \hat{a}_{i}
\end{array}
\end{array}
$$

What Hamiltonians can we rotate to the diagonal form?

Qubit algebra: Commuting Pauli products

(Qubitization-then-partitioning)

$$
\begin{aligned}
& \hat{H}_{n}=\sum_{k} c_{k} \hat{P}_{k}, \quad \hat{H}=\sum_{n} \hat{H}_{n} \\
& {\left[\hat{P}_{k}, \hat{P}_{k^{\prime}}\right]=0: \quad \hat{U}_{\mathrm{Cliff}}^{\dagger} \hat{H}_{n} \hat{U}_{\mathrm{Cliff}}=\hat{Z}_{n}}
\end{aligned}
$$

Verteletskyi, et al. J. Chem. Phys. 152124114 (2020)

Yen, et al. J. Chem. Theory Comput. 16, 190 (2020)

Hamiltonian decomposition: Fermionic algebra

$$
\begin{gathered}
\text { (Partitioning-then-qubitization) } \\
\hat{H}=\sum_{n} \hat{H}_{n} \quad \text { Hartree-Fock solvable fragments } \\
\text { Ie }: \quad \hat{h}_{1 e}=\sum_{p q} h_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}=\hat{U}_{\mathrm{HF}}^{\dagger}\left(\sum_{p} \epsilon_{p} \hat{n}_{p}\right) \hat{U}_{\mathrm{HF}} \\
\hat{U}_{\mathrm{HF}}=\prod_{p>q} e^{\theta_{p q}\left(\hat{a}_{p}^{\dagger} \hat{a}_{q}-\hat{a}_{q}^{\dagger} \hat{a}_{p}\right)} \quad \begin{array}{c}
\text { occ. number } \\
\hat{n}_{i} \rightarrow \hat{z}_{i}
\end{array} \text { orbital } \\
\text { leotations } \\
\hat{H}_{\mathrm{HF}}=\hat{U}_{\mathrm{HF}}^{\dagger}\left(\sum_{p q} \lambda_{p q} \hat{n}_{p} \hat{n}_{q}\right) \hat{U}_{\mathrm{HF}}
\end{gathered}
$$

Yen \& Izmaylov, PRX Quantum 2, 040320 (2021)

Which fragments are better, Qubit or Fermionic?

$$
\hat{H}=\sum_{n} \hat{H}_{n}
$$

Practical choice: Ist order Trotter

$$
e^{-i H t} \approx \prod_{n} e^{-i H_{n} t}=\prod_{n} \hat{U}_{n}^{\dagger} e^{-i Z_{n} t} \hat{U}_{n}
$$

Optimizing Trotter error

$$
\begin{aligned}
&\left\|e^{-i \hat{H} t}-\prod_{n} e^{-i \hat{H}_{n} t}\right\| \leq t^{2} \sum_{k \neq n} \|\left[\hat{H}_{k}, \hat{H}_{n}\right] \underset{\text { A.Childs et }}{ } \\
& 2 \sum_{n \neq k}\left\|\left[\hat{H}_{n}, \hat{H}_{k}\right]\right\| \leq\left(\sum_{n} \Delta E_{n}\right)^{2}\left[1-\sum_{n} \omega_{n}^{2}\right]
\end{aligned}
$$

Total Spectral	Entropic
Range	part

$$
\begin{array}{ccc}
S=-\sum_{n} \omega_{n} \ln \left(\omega_{n}\right) \approx 1-\sum_{n} \omega_{n}^{2}=S_{L} & \omega_{n}=\frac{\Delta E_{n}}{\sum_{k} \Delta E_{k}}: & \sum_{n} \omega_{n}=1, \omega_{n} \in[0,1] \\
\begin{array}{c}
\text { Smaller spread of } \\
\text { eigenvalues }
\end{array} & \begin{array}{c}
\text { Non-uniform } \\
\text { distribution }
\end{array} & \text { "Greedy" algorithms }
\end{array}
$$

Quantum 7, 1086 (2023)

Trotterization error

2.2 Linear Combination of Unitaries

$$
\begin{array}{r}
\hat{H}=\sum_{k} c_{k} \hat{U}_{k} \\
e^{-i \hat{H} t} \\
=\mathbb{1}-i \hat{H} t+\ldots
\end{array}
$$

I. Taylor expansion

2. Qubitization

Hamiltonian Simulation by Qubitization
Guang Hao Low ${ }^{1}$ and Isaac L. Chuang ${ }^{2}$

$$
\hat{W}=\left(\begin{array}{cc}
\hat{H} & \sqrt{1-\hat{H}^{2}} \\
-\sqrt{1-\hat{H}^{2}} & \hat{H}
\end{array}\right)=e^{i \cos ^{-1}(\hat{H}) \hat{\sigma}_{y}}
$$

LCU game: reduce the I-norm of coefficients, $\sum_{k}\left|c_{k}\right| \sim$ cost

I-norm lower bound

$$
\begin{gathered}
\hat{H}=s \hat{I}+\sum_{k} c_{k} \hat{U}_{k} \\
\Delta E / 2 \leq\|\hat{H}-s \hat{I}\| \leq \sum_{k}\left|c_{k}\right| \cdot\left\|\hat{U}_{k}\right\|=\sum_{k}\left|c_{k}\right| \\
\frac{E_{\max }-E_{\min }}{2}=\Delta E / 2=\min _{s}\|\hat{H}-s \hat{I}\|
\end{gathered}
$$

Hard limit: I-norm cannot be lower than a half of the spectral range ($\Delta \mathrm{E} / 2$)
(One way around is to change H)

BLock-Invariant Symmetry Shift (BLISS)

$\begin{aligned} \hat{K}= & {\left[\alpha_{1}+\sum_{p q} \beta_{p q} \hat{a}_{p}^{\dagger} \hat{a}_{q}\right]\left(\hat{N}_{e}-N_{e}\right)+\alpha_{2}\left(\hat{N}_{e}^{2}-N_{e}^{2}\right) } \\ & \underline{\text { Finding K: optimizing to reduce } \text { I-norm }}\end{aligned}$

$$
(\hat{H}-\hat{K})=\sum_{n} c_{n} \hat{P}_{n}, \quad \lambda=\sum_{n}\left|c_{n}\right|
$$

Note that I) K is not a symmetry, 2) using other symmetries is possible

K search: Lower bound results

Success is when ($\mathrm{H}-\mathrm{K}$) has the same $\Delta \mathrm{E} / 2$ as in H for a particular \# of electrons:

What U's to use?

$$
(\hat{H}-\hat{K})=\sum_{n} \operatorname{con}_{n} \hat{U}_{n}
$$

P's are good but can we do better?

Qubit anti-commuting grouping

$$
\begin{gathered}
\left\{\hat{P}_{k}, \hat{P}_{k^{\prime}}\right\}=2 \delta_{k k^{\prime}} \\
\sum_{k} \tilde{c}_{k}^{2}=1
\end{gathered}
$$

anti-commuting
Paulis form
reflections

$$
\hat{R}_{i}=\sum_{k} \tilde{c}_{k} \hat{P}_{k}
$$

Grouping always reduces I-norm
arXiv:2208.08272

Fermionic reflections:

$$
\begin{gathered}
\min _{\hat{U}_{\mathrm{HF}}^{(k)}, \lambda^{(k)}}\left\|\hat{H}-\sum_{k} \hat{H}_{\mathrm{HF}}^{(k)}\right\| \quad \hat{H}_{\mathrm{HF}}^{(k)}=\left(\hat{U}_{\mathrm{HF}}^{(k)}\right)^{\dagger}\left(\sum_{p q} \lambda_{p q}^{(k)} \hat{n}_{p} \hat{n}_{q}\right) \hat{U}_{\mathrm{HF}}^{(k)} \\
\hat{n}_{p}^{2}=\hat{n}_{p} \hat{\mathrm{r}}_{p}=2 \hat{n}_{p}-1 \quad \hat{r}_{p}^{2}=1 \\
\hat{H}=\sum_{k} c_{k} \hat{R}_{k} \\
\text { Ie: } \hat{R}=\hat{U}_{\mathrm{HF}}^{\dagger} \hat{r}_{p} \hat{U}_{\mathrm{HF}} \quad \text { ae: } \hat{R}=\hat{U}_{\mathrm{HF}}^{\dagger} \hat{r}_{p} \hat{r}_{p^{\prime}}, \hat{U}_{\mathrm{HF}} \\
\text { arXiv:2208.08272 }
\end{gathered}
$$

LCU decompositions results

I-norm improvement w.r.t. naïve Pauli decomposition for H

$H \Delta E / 2$	x1.8
H-K $\Delta E / 2$	x3.1
H-K Pauli	x1.9
H-K Qubit AC	x2.8
H-K Fermionic	x2.7

STO-3G basis $\mathrm{H}_{2} \quad \mathrm{LiH} \quad \mathrm{BeH}_{2} \quad \mathrm{NH}_{3} \quad \mathrm{H}_{2} \mathrm{O}$
arXiv:2304.I3772

Testing complexity: classical vs quantum

Other systems:
Rectangular H_{4} $\mathrm{H}_{2} \mathrm{O}$, sym OH stretch
N_{2} stretched

Quantum "hardness":
I. $\# \exp \left(\theta_{\mathrm{k}} X_{\mathrm{k}}\right)$
2. Trotter error
3. LCU cost (I-norm)
4. \# measurements VQE
arXiv:23II.00I29

Summary

Quantum chemistry is still attractive for demonstrating quantum advantage: We are looking for classically hard and quantum easy systems

Algebraic techniques are essential for many quantum algorithms due to non-trivial algebraic structure of the Hamiltonian: Lie and Clifford algebras and groups

$$
\hat{H}=\sum_{n} \hat{H}_{n} \quad \hat{H}=\sum_{k} c_{k} \hat{U}_{k}
$$

Great news is that in all quantum algorithms we have checked so far quantum hardness is not correlated with classical hardness (except initial state preparation)

Acknowledgments

Tzu-Ching (Thomson) Yen

Zachary
Pierce Bansingh

Aadithya Ganeshram

Ignacio Loaiza

Robert Lang

Smik
Patel

Seonghoon Choi

Luis Martinez
Martinez

Funding:

Google AI

NSERC
CRSNG

