Electron-nuclear correlation to the realtime timedependent density functional theory from mixed-quantum classical equations based on the exact factorization

Department of Chemistry, UNIST Daeho Han

VISTA seminar 10/11/2023

Decoherence correction based on exact factorization (XF)

Mixed quantum-classical (MQC) approach from XF

The MQC equation from XF gives an explicit form of the decoherence due to the electronnuclear correlation.

Nonadiabatic dynamics simulations from exact factorization

Various nonadiabatic dynamics methods based on XF

[Villaseco Arribas, E.; Vindel-Zandbergen, P.; Roy, S.; Maitra, N. T. PCCP, 2023.]

RT-TDDFT dynamics for simulating condensed systems

Semiclassical dynamics with realtime time-dependent density functional theory (RT-TDDFT)

In a semiclassical dynamics using RT-TDDFT, the many-body electronic problem is bypassed with TDDFT, and nuclei is propagated with the Ehrenfest force.

[Kolesov, G.; Grånäs, O.; Hoyt, R.; Vinichenko, D.; Kaxiras, E. JCTC, 2016.]

Many-body TDSE
$$i\partial_t \Phi_{\underline{\mathbf{R}}}(\underline{\mathbf{r}},t) = \hat{H}_{BO}(\underline{\mathbf{r}},t;\underline{\mathbf{R}})\Phi_{\underline{\mathbf{R}}}(\underline{\mathbf{r}},t)$$

td Kohn-Sham (TDKS) equation

$$i\frac{\partial\psi_j(\mathbf{r},t)}{\partial t} = \left[-\frac{1}{2}\nabla^2 + v + v_H + v_{xc}\right]\psi_j(\mathbf{r},t) = \hat{h}_{KS}[\rho]\psi_j(\mathbf{r},t)$$
$$\mathbf{F}_v = -\nabla_v E[\rho]$$

Nuclear equation

How to add the electron-nuclear correlation (ENC) to the TDKS equation?

It is natural to ask the correspondence between the XFMQC and TDKS equation.

How to add the electron-nuclear correlation (ENC) to the TDKS equation?

One crude approximation to generate a decoherence correction is to replace the many-body quantities to the one-body counterpart.

$$\begin{split} \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathbf{r}}},t) &\mapsto \psi_{\underline{\underline{\mathbf{R}}}}^{j}(\mathbf{r},t), \\ \hat{H}_{BO} &\mapsto \hat{h}_{KS}, \\ \mathbf{A}_{\nu}(\underline{\underline{\mathbf{R}}},t) &= \langle \Phi_{\underline{\underline{\mathbf{R}}}}(t) | - i \nabla_{\nu} \Phi_{\underline{\underline{\mathbf{R}}}}(t) \rangle_{\underline{\underline{\mathbf{r}}}} \mapsto \mathbf{a}_{\nu}^{j}(\underline{\underline{\mathbf{R}}},t) = \langle \psi_{\underline{\underline{\mathbf{R}}}}^{j}(t) | - i \nabla_{\nu} \psi_{\underline{\underline{\mathbf{R}}}}^{j}(t) \rangle \end{split}$$

Then the resulting equation is the following.

$$i\partial_t \psi_{\underline{\mathbf{R}}}^j(\mathbf{r},t) = \hat{h}_{KS} \psi_{\underline{\mathbf{R}}}^j(\mathbf{r},t) - \sum_{\nu} \frac{\mathscr{P}_{\nu}}{M_{\nu}} \cdot (\mathbf{a}_{\nu}^j + i\nabla_{\nu}) \psi_{\underline{\mathbf{R}}}^j(\mathbf{r},t)$$

However, this violates the orthogonality of TDKS orbitals.

$$\partial_t \langle \psi_{\underline{\underline{\mathbf{R}}}}^i(t) | \psi_{\underline{\underline{\mathbf{R}}}}^j(t) \rangle = \sum_{v} \frac{i\mathscr{P}_v}{M_v} \cdot \left[(\mathbf{a}_v^i + \mathbf{a}_v^j) \delta_{ij} - 2 \langle \psi_{\underline{\underline{\mathbf{R}}}}^i(t) | - i \nabla_v \psi_{\underline{\underline{\mathbf{R}}}}^j(t) \rangle \right] \neq 0$$

Hermitian form of the ENC operator

The violation of orthogonality is from the non-Hermiticity of the ENC operator.

$$\hat{H}_{en}^{(1)} = -\sum_{\nu} \frac{\mathscr{P}_{\nu}}{M_{\nu}} \cdot (\mathbf{A}_{\nu} + i\nabla_{\nu}) \qquad \hat{H}_{en}^{(2)} = \sum_{\nu} \frac{1}{2M_{\nu}} (\mathbf{A}_{\nu} + i\nabla_{\nu}) \cdot (\mathbf{A}_{\nu} + i\nabla_{\nu})$$

Stable propagation is guaranteed in the conventional RT-TDDFT dynamics since it is described with the Hermitian operator.

Equivalent time evolution, but Hermitian using the density representation

$$\begin{split} i |\Phi_{\underline{\mathbf{R}}}(t)\rangle &= \left[-i\sum_{\nu} \frac{\mathscr{P}_{\nu}}{M_{\nu}} \cdot \nabla_{\nu} \hat{\Gamma}_{\underline{\mathbf{R}}}(t) - \sum_{\nu} \frac{\nabla_{\nu}^{2} \hat{\Gamma}_{\underline{\mathbf{R}}}(t) + \nabla_{\nu} \hat{\Gamma}_{\underline{\mathbf{R}}}(t) \cdot \nabla_{\nu} \hat{\Gamma}_{\underline{\mathbf{R}}}(t)}{2M_{\nu}}\right] |\Phi_{\underline{\mathbf{R}}}(t)\rangle \\ &= \left(\hat{H}_{en}^{(1)} + \hat{H}_{en}^{(2)}\right) |\Phi_{\underline{\mathbf{R}}}(t)\rangle \\ \end{split}$$

$$\begin{aligned} &= \left(\hat{H}_{en}^{(1)} + \hat{H}_{en}^{(2)}\right) |\Phi_{\underline{\mathbf{R}}}(t)\rangle \\ \end{aligned}$$

$$\begin{aligned} &= \left(\hat{H}_{en}^{(1)} + \hat{H}_{en}^{(2)}\right) |\Phi_{\underline{\mathbf{R}}}(t)\rangle \\ \end{aligned}$$

$$\begin{aligned} &= \left(\hat{H}_{en}^{(1)} + \hat{H}_{en}^{(2)}\right) |\Phi_{\underline{\mathbf{R}}}(t)\rangle \\ \end{aligned}$$

$$\end{aligned}$$

[[]Han, D.; Ha, J.-K.; Min, S. K. JCTC, 2023.]

Equivalence of time evolution

Only the partial normalization condition is used for derivation. $\langle \Phi_{\underline{\mathbf{R}}}(t) | \Phi_{\underline{\mathbf{R}}}(t) \rangle_{\underline{\mathbf{r}}} = 1$ for all $\underline{\mathbf{R}}$ and t $H_{en}^{(2)}|\Phi_{\underline{\mathbf{R}}}\rangle = \sum \frac{1}{2M_{\nu}} (\mathbf{A}_{\nu} + i\nabla_{\nu}) \cdot (\mathbf{A}_{\nu} + i\nabla_{\nu}) |\Phi_{\underline{\mathbf{R}}}\rangle$ $=\sum \frac{1}{2M_{\nu}} \left[\left(\langle \Phi_{\underline{\mathbf{R}}} | -i\nabla_{\nu} \Phi_{\underline{\mathbf{R}}} \rangle + i\nabla_{\nu} \right) \cdot \left(\langle \Phi_{\underline{\mathbf{R}}} | -i\nabla_{\nu} \Phi_{\underline{\mathbf{R}}} \rangle + i\nabla_{\nu} \right) \right] |\Phi_{\underline{\mathbf{R}}} \rangle$ $=\sum \frac{1}{2M_{\nu}} \left[-\langle \Phi_{\underline{\underline{R}}} | \nabla_{\nu} \Phi_{\underline{\underline{R}}} \rangle \cdot \langle \Phi_{\underline{\underline{R}}} | \nabla_{\nu} \Phi_{\underline{\underline{R}}} \rangle | \Phi_{\underline{\underline{R}}} \rangle + \langle \Phi_{\underline{\underline{R}}} | \nabla_{\nu} \Phi_{\underline{\underline{R}}} \rangle \cdot | \nabla_{\nu} \Phi_{\underline{\underline{R}}} \rangle \right]$ $H_{en}^{(1)}|\Phi_{\underline{\mathbf{R}}}\rangle = -\sum_{\nu} \frac{\mathscr{P}_{\nu}}{M_{\nu}} \cdot (\mathbf{A}_{\nu} + i\nabla_{\nu})|\Phi_{\underline{\mathbf{R}}}\rangle$ $+ \langle \nabla_{\nu} \Phi_{\underline{\mathbf{R}}} \cdot | \nabla_{\nu} \Phi_{\underline{\mathbf{R}}} \rangle | \Phi_{\underline{\mathbf{R}}} \rangle + \langle \Phi_{\underline{\mathbf{R}}} | \nabla_{\nu}^2 \Phi_{\underline{\mathbf{R}}} \rangle | \Phi_{\underline{\mathbf{R}}} \rangle + \langle \Phi_{\underline{\mathbf{R}}} | \nabla_{\nu} \Phi_{\underline{\mathbf{R}}} \rangle \cdot | \nabla_{\nu} \Phi_{\underline{\mathbf{R}}} \rangle - | \nabla_{\nu}^2 \Phi_{\underline{\mathbf{R}}} \rangle \Big]$ $= -\sum \frac{\mathscr{P}_{\nu}}{M_{\nu}} \cdot \left(\langle \Phi_{\underline{\mathbf{R}}} | -i \nabla_{\nu} \Phi_{\underline{\mathbf{R}}} \rangle | \Phi_{\underline{\mathbf{R}}} \rangle + i | \nabla_{\nu} \Phi_{\underline{\mathbf{R}}} \rangle \right)$ $=\sum \frac{1}{2M_{\nu}} \left[\left(-|\Phi_{\underline{\mathbf{R}}}\rangle \langle \Phi_{\underline{\mathbf{R}}}|\nabla_{\nu}\Phi_{\underline{\mathbf{R}}}\rangle \cdot \langle \Phi_{\underline{\mathbf{R}}}|\nabla_{\nu}\Phi_{\underline{\mathbf{R}}}\rangle - |\Phi_{\underline{\mathbf{R}}}\rangle \langle \nabla_{\nu}\Phi_{\underline{\mathbf{R}}} \cdot |\nabla_{\nu}\Phi_{\underline{\mathbf{R}}}\rangle \right] \right]$ $+\left(2|\nabla_{\nu}\Phi_{\underline{\mathbf{R}}}\rangle\cdot\langle\Phi_{\underline{\mathbf{R}}}|\nabla_{\nu}\Phi_{\underline{\mathbf{R}}}\rangle+2|\Phi_{\underline{\mathbf{R}}}\rangle\langle\nabla_{\nu}\Phi_{\underline{\mathbf{R}}}\cdot|\nabla_{\nu}\Phi_{\underline{\mathbf{R}}}\rangle+|\Phi_{\underline{\mathbf{R}}}\rangle\langle\Phi_{\underline{\mathbf{R}}}|\nabla_{\nu}^{2}\Phi_{\underline{\mathbf{R}}}\rangle-|\nabla_{\nu}^{2}\Phi_{\underline{\mathbf{R}}}\rangle\right)\right]$ $=-i\sum \frac{\mathscr{P}_{\nu}}{M_{\nu}} \cdot \left(\langle \nabla_{\nu} \Phi_{\underline{\mathbf{R}}} | \Phi_{\underline{\mathbf{R}}} \rangle | \Phi_{\underline{\mathbf{R}}} \rangle + |\nabla_{\nu} \Phi_{\underline{\mathbf{R}}} \rangle \langle \Phi_{\underline{\mathbf{R}}} | \Phi_{\underline{\mathbf{R}}} \rangle \right)$ $=\sum \frac{1}{2M_{\nu}} \left[\left(-|\Phi_{\underline{\underline{R}}}\rangle \langle \nabla_{\nu} \Phi_{\underline{\underline{R}}} | \Phi_{\underline{\underline{R}}} \rangle \cdot \langle \nabla_{\nu} \Phi_{\underline{\underline{R}}} | \Phi_{\underline{\underline{R}}} \rangle - |\Phi_{\underline{\underline{R}}}\rangle \langle \nabla_{\nu} \Phi_{\underline{\underline{R}}} \cdot |\nabla_{\nu} \Phi_{\underline{\underline{R}}} \rangle \right] \right]$ $= -i\sum_{\nu} \frac{\mathscr{P}_{\nu}}{M_{\nu}} \cdot \nabla_{\nu} \Gamma_{\underline{\mathbf{R}}} |\Phi_{\underline{\mathbf{R}}}\rangle$ + $\left(2|\nabla_{\nu}\Phi_{\underline{R}}\rangle \cdot \langle\Phi_{\underline{R}}|\nabla_{\nu}\Phi_{\underline{R}}\rangle - |\Phi_{\underline{R}}\rangle \langle\nabla_{\nu}^{2}\Phi_{\underline{R}}|\Phi_{\underline{R}}\rangle - |\nabla_{\nu}^{2}\Phi_{\underline{R}}\rangle\right)$ $=\sum \frac{1}{2M_{\nu}} \left[\left(-|\Phi_{\underline{\mathbf{R}}}\rangle \langle \nabla_{\nu} \Phi_{\underline{\mathbf{R}}} | \Phi_{\underline{\mathbf{R}}} \rangle \cdot \langle \nabla_{\nu} \Phi_{\underline{\mathbf{R}}} | \Phi_{\underline{\mathbf{R}}} \rangle - |\Phi_{\underline{\mathbf{R}}}\rangle \langle \nabla_{\nu} \Phi_{\underline{\mathbf{R}}} \cdot |\nabla_{\nu} \Phi_{\underline{\mathbf{R}}} \rangle \langle \Phi_{\underline{\mathbf{R}}} | \Phi_{\underline{\mathbf{R}}} \rangle \right] \right]$ $=\tilde{H}_{en}^{(1)}|\Phi_{\mathbf{R}}\rangle.$ $-|\nabla_{\nu}\Phi_{\underline{R}}\rangle \cdot \langle\Phi_{\underline{R}}|\nabla_{\nu}\Phi_{\underline{R}}\rangle \langle\Phi_{\underline{R}}|\Phi_{\underline{R}}\rangle - |\nabla_{\nu}\Phi_{\underline{R}}\rangle \cdot \langle\Phi_{\underline{R}}|\Phi_{\underline{R}}\rangle \langle\nabla_{\nu}\Phi_{\underline{R}}|\Phi_{\underline{R}}\rangle \Big)$ $+\left(-|\nabla_{\nu}^{2}\Phi_{\underline{\mathbf{R}}}\rangle\langle\Phi_{\underline{\mathbf{R}}}|\Phi_{\underline{\mathbf{R}}}\rangle-2|\nabla_{\nu}\Phi_{\underline{\mathbf{R}}}\rangle\cdot\langle\nabla_{\nu}\Phi_{\underline{\mathbf{R}}}|\Phi_{\underline{\mathbf{R}}}\rangle-|\Phi_{\underline{\mathbf{R}}}\rangle\langle\nabla_{\nu}^{2}\Phi_{\underline{\mathbf{R}}}|\Phi_{\underline{\mathbf{R}}}\rangle\right)\right]$ $=\sum \frac{1}{2M_{\nu}} \left(-\nabla_{\nu} \Gamma_{\underline{\mathbf{R}}} \cdot \nabla_{\nu} \Gamma_{\underline{\mathbf{R}}} - \nabla_{\nu}^{2} \Gamma_{\underline{\mathbf{R}}} \right) |\Phi_{\underline{\mathbf{R}}}\rangle$

 $= \tilde{H}_{en}^{(2)} |\Phi_{\mathbf{R}}\rangle,$

* Here, all operations are done with respect to the electronic degrees of freedom.

TDKS equation based on XF

The ENC Hamiltonian as a perturbation

To derive the ENC term in the TDKS equation, consider the ENC Hamiltonian as a perturbation to the original action.

$$\mathscr{A} = \int_{t_0}^{t_1} dt \langle \Phi_{\underline{\mathbf{R}}} | i\partial_t - \hat{H}_{BO} - \hat{H}_{en}^{(1)} \Phi_{\underline{\mathbf{R}}} \rangle_{\underline{\mathbf{r}}}.$$
$$\mathscr{A} = \mathscr{B} - \int_{t_0}^{t_1} dt \int d\mathbf{r} \rho_{\underline{\mathbf{R}}} (\mathbf{r}, t) v(\mathbf{r}, t) \quad \checkmark$$
$$\mathsf{ENC action} \quad \mathscr{C} = \int_{t_0}^{t_1} dt \langle \Phi_{\underline{\mathbf{R}}} | \hat{H}_{en}^{(1)} | \Phi_{\underline{\mathbf{R}}} \rangle_{\underline{\mathbf{r}}} = 0$$

$$\hat{H}_{en}^{(1)} = -i\sum_{v} \frac{\mathscr{P}_{v}}{M_{v}} \cdot \nabla_{v} \hat{\Gamma}_{\underline{\mathbf{R}}}$$

$$\langle \Phi_{\underline{\mathbf{R}}} | \hat{H}_{en}^{(1)} \Phi_{\underline{\mathbf{R}}} \rangle_{\underline{\mathbf{r}}} = -i\sum_{v} \frac{\mathscr{P}_{v}}{M_{v}} \cdot \nabla_{v} \langle \Phi_{\underline{\mathbf{R}}} | \hat{\Gamma}_{\underline{\mathbf{R}}} \Phi_{\underline{\mathbf{R}}} \rangle_{\underline{\mathbf{r}}} = 0$$

$$PNC \ \langle \Phi_{\underline{\mathbf{R}}}(t) | \Phi_{\underline{\mathbf{R}}}(t) \rangle_{\underline{\mathbf{r}}} = 1 \text{ for all } \underline{\mathbf{R}} \text{ and } t$$

cf. A similar approach has been employed where the ENC Hamiltonian is considered as a perturbation in the static perturbation theory. The 1st order term does not change the energy but does the wave function.

Nuclear-velocity perturbation theory based on XF [Scherrer, A.; Agostini, F.; Sebastiani, D.; Gross, E. K. U.; Vuilleumier, R. JCP, 2015.]

$$\begin{aligned} \epsilon(\mathbf{R},t) &= \left\langle \varphi_{\mathbf{R}}^{(0)} \right| \hat{H}_{BO} + \sum_{\nu=1}^{N_n} \lambda_{\nu}(\mathbf{R},t) \cdot (-i\hbar\nabla_{\nu}) \left| \varphi_{\mathbf{R}}^{(0)} \right\rangle_{\mathbf{r}} = \epsilon_{BO}^{(0)}(\mathbf{R}) \\ \varphi_{\mathbf{R}}(\mathbf{r},t) &= \varphi_{\mathbf{R}}^{(0)}(\mathbf{r}) + \sum_{e\neq 0} \frac{\left\langle \varphi_{\mathbf{R}}^{(e)} \right| - i\hbar\sum_{\nu,\alpha} \lambda_{\alpha}^{\nu}(\mathbf{R},t) \partial_{\alpha}^{\nu} \varphi_{\mathbf{R}}^{(0)} \right\rangle_{\mathbf{r}}}{\epsilon_{BO}^{(0)}(\mathbf{R}) - \epsilon_{BO}^{(e)}(\mathbf{R})} \varphi_{\mathbf{R}}^{(e)}(\mathbf{r}) \end{aligned}$$

TDKS equation based on XF

The ENC Hamiltonian as a perturbation

The ENC action can be expressed in terms of density or 1RDM, which is constructed from the TDKS orbital of the reference. $\int d\mathbf{r} \rho_{\mathbf{R}}(\mathbf{r},t) = N_e \langle \Phi_{\mathbf{R}} | \hat{\Gamma}_{\mathbf{R}} \Phi_{\mathbf{R}} \rangle \qquad \gamma_{\mathbf{R}}(\mathbf{r},\mathbf{r}',t) = \sum_{\mathbf{r}}^{occ} \psi_{\mathbf{P}}^j(\mathbf{r},t) \psi_{\mathbf{P}}^{j*}(\mathbf{r}',t) \quad 1\text{RDM}(1\text{-body reduced density matrix})$

$$\mathscr{C} = \int_{t_0}^{t_1} dt \langle \Phi_{\underline{\mathbf{R}}} | \hat{H}_{en}^{(1)} | \Phi_{\underline{\mathbf{R}}} \rangle_{\underline{\mathbf{r}}} \stackrel{\mathsf{I}}{=} \int_{t_0}^{t_1} dt \left(-i \sum_{\nu} \frac{\mathscr{P}_{\nu}}{M_{\nu}N_e} \cdot \int d\mathbf{r} \nabla_{\nu} \rho_{\underline{\mathbf{R}}}(\mathbf{r}, t) \right) \stackrel{\mathsf{I}}{=} \int_{t_0}^{t_1} dt \left(-i \sum_{\nu} \frac{\mathscr{P}_{\nu}}{M_{\nu}N_e} \cdot \frac{1}{2} \iint d\mathbf{r} d\mathbf{r} \nabla_{\nu} | \gamma_{\underline{\mathbf{R}}}(\mathbf{r}, \mathbf{r}', t) |^2 \right)$$

Then ENC term is derived, taking a functional derivative with respect to the reference TDKS orbital.

$$\frac{\delta\mathscr{A}}{\delta\psi_{\underline{\underline{R}}}^{i*}(\mathbf{r},t)} = \frac{\delta\mathscr{B}}{\delta\rho_{\underline{\underline{R}}}(\mathbf{r},t)}\psi_{\underline{\underline{R}}}^{i}(\mathbf{r},t) - v(\mathbf{r},t)\psi_{\underline{\underline{R}}}^{i}(\mathbf{r},t) - \int d\mathbf{r}' \left(-i\sum_{V}\frac{\mathscr{P}_{V}}{M_{V}N_{e}}\cdot\nabla_{V}\gamma_{\underline{\underline{R}}}(\mathbf{r},\mathbf{r}',t)\psi_{\underline{\underline{R}}}^{i}(\mathbf{r}',t)\right) = \frac{\delta\mathscr{B}}{\delta\rho_{\underline{\underline{R}}}(\mathbf{r},t)}\psi_{\underline{\underline{R}}}^{i}(\mathbf{r},t) - v(\mathbf{r},t)\psi_{\underline{\underline{R}}}^{i}(\mathbf{r},t) - \hat{h}_{en}\psi_{\underline{\underline{R}}}^{i}(\mathbf{r},t)$$
$$\hat{h}_{en}[\gamma_{\underline{\underline{R}}}]\psi_{\underline{\underline{R}}}^{j}(\mathbf{r},t) \equiv \int d\mathbf{r}' \left(-i\sum_{V}\frac{\mathscr{P}_{V}}{M_{V}N_{e}}\cdot\nabla_{V}\gamma_{\underline{\underline{R}}}(\mathbf{r},\mathbf{r}',t)\right)\psi_{\underline{\underline{R}}}^{j}(\mathbf{r}',t)$$

$$\begin{aligned} \iint \nabla_{\mathbf{v}} |\underline{\gamma}_{\underline{\mathbf{R}}}(\mathbf{r},\mathbf{r}',t)|^{2} d\mathbf{r}' d\mathbf{r} &= \sum_{jk}^{occ} \int d\mathbf{r} \nabla_{\mathbf{v}} \psi_{\underline{\underline{\mathbf{R}}}}^{j}(\mathbf{r},t) \psi_{\underline{\underline{\mathbf{R}}}}^{k*}(\mathbf{r},t) \int d\mathbf{r}' \psi_{\underline{\underline{\mathbf{R}}}}^{j*}(\mathbf{r}',t) \psi_{\underline{\underline{\mathbf{R}}}}^{k}(\mathbf{r}',t) + \sum_{jk}^{occ} \int d\mathbf{r} \psi_{\underline{\underline{\mathbf{R}}}}^{j}(\mathbf{r},t) \int d\mathbf{r}' \psi_{\underline{\underline{\mathbf{R}}}}^{k*}(\mathbf{r}',t) \\ &+ \sum_{jk}^{occ} \int d\mathbf{r} \psi_{\underline{\underline{\mathbf{R}}}}^{j}(\mathbf{r},t) \psi_{\underline{\underline{\mathbf{R}}}}^{k*}(\mathbf{r},t) \int d\mathbf{r}' \nabla_{\mathbf{v}} \psi_{\underline{\underline{\mathbf{R}}}}^{j}(\mathbf{r}',t) \psi_{\underline{\underline{\mathbf{R}}}}^{k*}(\mathbf{r}',t) + \sum_{jk}^{occ} \int d\mathbf{r} \psi_{\underline{\underline{\mathbf{R}}}}^{j}(\mathbf{r},t) \int d\mathbf{r}' \psi_{\underline{\underline{\mathbf{R}}}}^{k*}(\mathbf{r}',t) \\ &= \sum_{jk}^{occ} \int d\mathbf{r} \left(\nabla_{\mathbf{v}} \psi_{\underline{\underline{\mathbf{R}}}}^{j}(\mathbf{r},t) \psi_{\underline{\underline{\mathbf{R}}}}^{j*}(\mathbf{r},t) + \psi_{\underline{\underline{\mathbf{R}}}}^{j}(\mathbf{r},t) \nabla_{\mathbf{v}} \psi_{\underline{\underline{\mathbf{R}}}}^{j*}(\mathbf{r}',t) \right) + \sum_{j}^{occ} \int d\mathbf{r} \psi_{\underline{\underline{\mathbf{R}}}}^{j}(\mathbf{r}',t) \psi_{\underline{\underline{\mathbf{R}}}}^{j*}(\mathbf{r}',t) \\ &= \sum_{j}^{occ} \int d\mathbf{r} \left(\nabla_{\mathbf{v}} \psi_{\underline{\underline{\mathbf{R}}}}^{j}(\mathbf{r},t) \psi_{\underline{\underline{\mathbf{R}}}}^{j*}(\mathbf{r},t) + \psi_{\underline{\underline{\mathbf{R}}}}^{j*}(\mathbf{r},t) \right) + \sum_{j}^{occ} \int d\mathbf{r}' \left(\nabla_{\mathbf{v}} \psi_{\underline{\underline{\mathbf{R}}}}^{j*}(\mathbf{r}',t) + \psi_{\underline{\underline{\mathbf{R}}}}^{j*}(\mathbf{r}',t) \right) \\ &= 2 \int d\mathbf{r} \nabla_{\mathbf{v}} \rho(\mathbf{r},t) \end{aligned}$$

XF-TDKS equations

The resultant coupled equations are given as

 $i\frac{\partial \psi_{\underline{\underline{R}}}^{j}(\mathbf{r},t)}{\partial t} = \left(\hat{h}_{KS}[\rho_{\underline{\underline{R}}}(\mathbf{r},t)] + \hat{h}_{en}[\gamma_{\underline{\underline{R}}}]\right)\psi_{\underline{\underline{R}}}^{j}(\mathbf{r},t) \quad \hat{h}_{en}[\gamma_{\underline{\underline{R}}}]\psi_{\underline{\underline{R}}}^{j}(\mathbf{r},t) \equiv \int d\mathbf{r}' \left(-i\sum_{v} \frac{\mathscr{P}_{v}}{M_{v}N_{e}} \cdot \nabla_{v}\gamma_{\underline{\underline{R}}}(\mathbf{r},\mathbf{r}',t)\right)\psi_{\underline{\underline{R}}}^{j}(\mathbf{r}',t)$ $\mathbf{F}_{v} = -\nabla_{v}E[\rho_{\underline{\underline{R}}}(\mathbf{r},t)] - i\sum_{v'} \frac{\mathscr{P}_{v'}}{M_{v'}N_{e}} \cdot \iint d\mathbf{r}d\mathbf{r}'\nabla_{v'}\gamma_{\underline{\underline{R}}}(\mathbf{r},\mathbf{r}',t)\nabla_{v}\gamma_{\underline{\underline{R}}}(\mathbf{r}',\mathbf{r},t)$ $Gauge \ condition \ of \ the \ XFMQC \ equation$ $\mathbf{F}_{v} = \dot{\mathbf{A}}_{v} = \sum_{i}(\langle \dot{\psi}_{\underline{R}}^{i} | -i\nabla_{v}\psi_{\underline{R}}^{i} \rangle + \langle \psi_{\underline{\underline{R}}}^{i} | -i\nabla_{v}\psi_{\underline{\underline{R}}}^{i} \rangle)$

Now, the orthonormality is guaranteed with the electronic propagation.

$$\begin{aligned} \partial_t \langle \psi_{\underline{\mathbf{R}}}^i(t) | \psi_{\underline{\mathbf{R}}}^j(t) \rangle &= \iint d\mathbf{r} d\mathbf{r}' \sum_{\nu} \frac{\mathscr{P}_{\nu}}{M_{\nu} N_e} \cdot \nabla_{\nu} \gamma_{\underline{\mathbf{R}}}(\mathbf{r}', \mathbf{r}, t) \psi_{\underline{\mathbf{R}}}^{i*}(\mathbf{r}', t) \psi_{\underline{\mathbf{R}}}^j(\mathbf{r}, t) \\ &+ \iint d\mathbf{r} d\mathbf{r}' \left[-\sum_{\nu} \frac{\mathscr{P}_{\nu}}{M_{\nu} N_e} \cdot \nabla_{\nu} \gamma_{\underline{\mathbf{R}}}(\mathbf{r}, \mathbf{r}', t) \psi_{\underline{\mathbf{R}}}^{i*}(\mathbf{r}, t) \psi_{\underline{\mathbf{R}}}^j(\mathbf{r}', t) \right] \end{aligned}$$

MQC dynamics of the Shin-Metiu model

The new ENC operator are tested with the MQC dynamics of Shin-Metiu model using the Crank-Nicolson propagator. The MQC dynamics is compared with the quantum dynamics (QD) with the numerical grid method.

MQC dynamics of the Shin-Metiu model

Stability of the nonadiabatic dynamics with the new Hermitian ENC operator is confirmed by monitoring the mean absolute error (MAE) of the norm from unity.

$$\frac{1}{N_{traj}}\sum_{\underline{\mathbf{R}}}|1-\langle \Phi_{\underline{\mathbf{R}}}(t)|\Phi_{\underline{\mathbf{R}}}(t)\rangle_{\underline{\mathbf{r}}}$$

Non-Hermitian propagations show divergent MAEs, and eventually halt due to their instability.

MQC dynamics of the Shin-Metiu model

- Overall, CT/AT(SHXF) dynamics well reproduce the QD profile in the classically sampled region.
- In CT, the force behaves continuously, giving the potential "step" present in QD. While, in AT, this step is not shown due to its simplification of the force.

MQC dynamics of the Shin-Metiu model

The MQC dynamics cannot describe the quantum inference, since the wave nature is lost from the trajectory-based approximation.

• The td potential energy is no longer reproduced, and nuclear positions on each adiabatic state behave independently.

MQC dynamics of the Shin-Metiu model

Adiabatic population	$\boldsymbol{\rho}_{ll}(t) = \langle \boldsymbol{\phi}_{\underline{\underline{R}}}^{l} \boldsymbol{\Phi}_{\underline{\underline{R}}} \rangle \langle \boldsymbol{\Phi}_{\underline{\underline{R}}} \boldsymbol{\phi}_{\underline{\underline{R}}}^{l} \rangle = C_{l} ^{2}$
Coherence (solid)	$ \boldsymbol{\rho}_{lk} ^2(t) = C_l(t) ^2 C_k(t) ^2$
Coherence (dashed)	$\langle w_{lk}(t) \rangle = \sum_{R} w_{l}^{R}(t) w_{k}^{R}(t)$
Gaussian-smeared density	$w_l^R(t) = \sum_{R'} \rho_{ll}^{R'}(t) g^{RR'}(t) / \sum_{R' \in \mathscr{D}(R)} g^{RR'}(t)$
	$g^{RR'}(t) = \exp((R(t) - R'(t))^2 / \sigma^2)$
Purity	$P(t) = \int d\underline{\mathbf{r}} d\underline{\mathbf{r}}' \bar{\Gamma}(\underline{\mathbf{r}},\underline{\mathbf{r}}',t) \bar{\Gamma}(\underline{\mathbf{r}}',\underline{\mathbf{r}},t)$
	$\bar{\Gamma}(\underline{\mathbf{r}},\underline{\mathbf{r}}',t) = \int d\underline{\underline{\mathbf{R}}} \boldsymbol{\chi}(\underline{\underline{\mathbf{R}}},t) ^2 \Phi_{\underline{\underline{\mathbf{R}}}}(\underline{\underline{\mathbf{r}}},t) \Phi_{\underline{\underline{\mathbf{R}}}}^*(\underline{\underline{\mathbf{r}}}',t)$

The population of all methods shows consistency except for the Ehrenfest dynamics during the 2nd crossing.

- The Ehrenfest dynamics fails to capture the decoherence completely.
- The MQC dynamics cannot capture the 2nd coherence peak from the quantum interference. However, its revised coherence indicator considering neighboring trajectories can explain it.
- Purities indicate the state mixing correctly when the population exchange occurs. However, they behave similarly in all methods, so it is insufficient to be a measure of quality of a nonadiabatic dynamics.

Practical implementation of the XF-TDKS equation

Practical implementation of the XF-TDKS equation

Orbital-based surface hopping through exact factorization (OSHXF)

- Excited-state dynamics of an ethylene molecule in vacuum are conducted while the initial electronic configuration is the HOMO \rightarrow LUMO configuration.
- The elongation and torsion occur simultaneously. All trajectories deactivate to the ground state through the twisted CH_2 structures of the conical intersection.
- Without the decoherence correction, the density matrix cannot recover to that of the ground-state configuration.

Conclusion

- The Hermitian-type electron-nuclear correlation operator from XF is derived, giving equivalent time evolution.
- The decoherence correction for the TDKS equation is deduced based on XF.
- Combining with SHXF and the XF-TDKS equation, the OSHXF method has been developed.

Acknowledgements

Prof . Seung Kyu Min

- Dr. Jong-Kwon Ha
- Dr. In Seong Lee
- Dr. Hwon Kim
- Tae In Kim
- Sung Wook Moon
- Seokjin Kim
- Seong Ho Kim
- Jae Hyeok Lee

ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY 2 0 0 7