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Standard answer:  P. A. M. Dirac, 1926, 1927

Solve the Schrödinger equation for the 
system in a time-dependent perturbation H¢(t) 
by expanding the wave function as a series
in the eigenstates of the unperturbed 
Hamiltonian H0. 

 [H0 +  H¢(t)] | y(t) ñ  = i ħ ¶ | y(t) ñ /¶t 

Ansatz:  | y(t) ñ = Sn cn(t) exp(-iEnt/ħ) | n0 ñ 

     

P. A. M. Dirac, CORBIS, 
The Daily Telegraph

What is the probability of a transition when a quantum system is 
subject to a time-dependent applied field?



Then to find the transition probability . . .

| y(t) ñ = Sn cn(t) exp(-iEnt/ħ) | n0 ñ 

From the time-dependent 
Schrödinger equation, we find
dcn(t)/dt =  – (i/ħ) Sk  á n0 | H¢(t) | k0 ñ
      � ck(t) exp[-i (Ek – En) t/ħ]

Coefficients cn(t) and ck(t) are related by

cn(t) = cn(-∞) – (i/ħ) Sk  ò-∞

t
 dt¢ á n0 | H¢(t¢) | k0 ñ ck(t¢) exp[-i(Ek – En) t¢/ħ]

   

P. A. M. Dirac

It’s |cn(t)|2 



Suggestion of Landau and Lifshitz:  Integrate by parts!

Start from the first-order excited state coefficients cn
(1)(t)

cn
(1)(t) = (-i/ħ) ò

-∞

t
  dt¢ á n0 | H¢(t¢) | 00 ñ exp[i(En – E0) t¢/ħ]

 

L. D. Landau E. M. Lifshitz



The first-order excited state coefficients ck
(1)(t) are

ck
(1)(t) = (-i/ħ) ò

-∞

t
  dt¢ á k0 | H¢(t¢) | 00 ñ exp[i(Ek – E0) t¢/ħ]

 Integration by parts gives:  ck
(1)(t) = ak

(1)(t) + bk
(1)(t)

  ak
(1)(t) = á k0 | H¢(t) | 00 ñ exp[i(Ek – E0) t/ħ] (E0 – Ek)-1

  bk
(1)(t) = (Ek – E0)-1  ò

-∞

t
  dt¢ á k0 | ¶H¢(t¢)/¶t¢ | 00 ñ exp[i(Ek – E0) t¢/ħ]

ak
(1)(t):  adiabatic coefficient

bk
(1)(t):  nonadiabatic coefficient 

Important observation:  Up to a phase, bk(t) = á k¢(t) | Y(t) ñ 
where | k¢(t) ñ is the instantaneous excited state, which differs from | k0 ñ 



Two views of a transition

Dirac:  For a system that started in the unperturbed ground state 
| 00 ñ, a transition to an excited state | k0 ñ has occurred if | k0 ñ is 
present in the wave function. 

Landau and Lifshitz:  For a system that started in the unperturbed 
ground state, a transition to an excited state has occurred if the 
wave function contains states that are not adiabatically connected 
to the ground state | 00 ñ, but that are connected instead to an 
excited state | k0 ñ of the unperturbed system.

We have explored the suggestion by Landau and Lifshitz and its 
further implications.



Unperturbed System Perturbed System

�

�

� Max Born

Transition 
probability:
| bk(t) |2

Adiabatic coefficients ak
(1)(t)

Nonadiabatic coefficients bk
(1)(t)

V. Fock



The energy also separates into adiabatic and nonadiabatic parts!

 

E(2)(t) = Sk≠0  á 00 | H¢(t) | k0 ñ á k0 | H¢(t) | 00 ñ/(E0 – Ek)

       + Sk≠0 | bk
(1)(t)|2 (Ek – E0)

Adiabatic adjustment of the ground state

Transitions!

A. Mandal and K. L. C. Hunt, J. Chem. Phys. 137, 164109 (2012).
Variance of the energy in terms of | bk(t)|2:  

A. Mandal and K. L. C. Hunt, J. Chem. Phys. 152, 104110 (2020).



Molecule in an electromagnetic field:  
Power absorbed from the field

Photo and concept credit:  Richard Box, University of Bristol



Perturbation due to an external electromagnetic field

H¢(t) = -c-1 ò d3r  j(r) × A(r, t)

E(r, t) = -c-1 ¶A(r, t)/¶t
[Coulomb gauge]

Adiabatic coefficient
ak

(1)(t) = -c-1 exp(iEk0t/ħ) (E0 – Ek)-1 ò d3r  á k0 | j(r) | 00 ñ × A(r, t)

Nonadiabatic coefficient
bk

(1)(t) = (Ek – E0)-1 ò d3r ò-∞
t  dt¢ exp(iEk0t¢/ħ) á k0 | j(r) | 00 ñ × E(r, t¢) 



Power P absorbed from the external field

 P = dw/dt = ò d3r á j(r, t) ñ × E(r, t)

Adiabatic coefficients ak
(1)(t) µ A(r, t)

Nonadiabatic coefficients bk
(1)(t) depend on E(r, t¢)

Power absorption P is determined by bk
(1)(t)!

   P = ¶Eb(t)/¶t = ¶ [Sk≠0 | bk
(1)(t) |2 (Ek – E0)]/¶t 

A. Mandal and K. L. C. Hunt, J. Chem. Phys. 143, 134012 (2015).



       

Response to a perturbing electromagnetic pulse

Cosine wave in a Gaussian envelope
            t

ck
(1) (t) = (-i/ħ)  ò-∞  á k | H¢(t¢) | 0 ñ exp(iwk0t¢) dt¢

ak
(1)(t) = á k | H¢(t) | 0 ñ exp(iwk0t)/(E0 – Ek)

         t

bk
(1) (t) = (ħwk0)-1  ò-∞  á k | ∂H¢(t¢)/∂t¢ | 0 ñ exp(iwk0t¢) dt¢ t



Comparisons off resonance

Scaled transition 
probabilities Pk vs. time

Resonant frequency w = 10 

Blue:  Nonadiabatic 
transition probability

Red:  Dirac’s form, ck(t)

A. Mandal and K. L. C. Hunt, J. Chem. Phys., 
148, 194107 (2018).



A. Mandal and K. L. C. Hunt, J. Chem. Phys. 
149, 204110 (2018).

Nonadiabatic transition 
probability, | bk(t) |2

Effect of a perturbing “plateau 
pulse” with an interval in which the 
field is constant 

No transitions occur while 
the perturbation is constant.  



A. Mandal and K. L. C. Hunt, J. Chem. Phys. 
149, 204110 (2018).

Effect of a perturbing “plateau 
pulse” with an interval in which the 
field is constant 

Dirac’s transition probability
 | ck(t) |2

Nonadiabatic transition 
probability, | bk(t) |2



Oscillatory pattern of transition probabilities found when a constant 
perturbation is imposed suddenly and turned off suddenly

The literature often represents 
these as Rabi oscillations.  But 
are Rabi oscillations necessary 
to explain the pattern?

Dirac picture:  Oscillations 
occur while the field is constant

Nonadiabatic picture: 
Oscillations occur due to jumps 
when the field starts and stops 



Analytical Strategy
Initial density matrices for a two-level model system

     Unperturbed basis              Perturbed basis

     0           0               | bk |2        bk*

     0   1             bk     1 - | bk |2

Time evolve & allow for dephasing
and population relaxation

ru(t) rp(t)

ru(t)¢ rp(t)¢

Make all comparisons in the same basis!



Time Evolution Equations for the Density Matrix

Redfield theory for the density matrix in the secular approximation

 ¶rcd(t)/¶t = -(i/ħ) [H(t), r(t)]cd - Sef Rcd,ef ref(t)

In the basis of the perturbed eigenfunctions:      
 ¶rk¢k¢(t)/¶t = - x R rk¢k¢ + R r0¢0¢        Coupling to a bath!
 ¶r0¢0¢(t)/¶t = x R rk¢k¢ - R r0¢0¢ 

 ¶rk¢0¢(t)/¶t = -(i/ħ) (Ek¢ – E0¢) rk¢0¢(t) – (1/T2) rk¢0¢(t)
                 
In the basis of the original, unperturbed eigenfunctions:
 ¶r00(t)/¶t = 2 h0k q(t) – R r00(t) + x0 R rkk(t)
 ¶rkk(t)/¶t = - 2 h0k q(t) – x0 R rkk(t) + R r00(t)
 ¶p(t)/¶t = wk0 q(t) – (1/T2) p(t)
 ¶q(t)/¶t = - wk0 p(t) + h0k [rkk(t) – r00(t)] – (1/T2) q(t)



Results for HCl, starting in rotational ground state
Allow for dephasing and population relaxation—no longer a pure quantum state

Results in unperturbed basis Results in perturbed basis
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r00(t) r00(t)

rkk(t)
rkk(t)

p(t) p(t)

q(t) q(t)

t (psec) t (psec)

These results remain different when expressed in the same basis set!



In the perturbed basis, the populations relax to equilibrium:

r0¢0¢(t) = {x + [1 - | bk(0) |2 (1 + x)] exp[-(1 + x) R t]}/(1 + x) 

rk¢k¢(t) = {1 - [1 - | bk(0) |2 (1 + x)] exp[-(1 + x) R t]}/(1 + x)   

This does not happen in the unperturbed basis:

r00,s = {2 h0k
2/T2 + x0 R [(1/T2)2 + wk0

2]}/b 

rkk,s = {2 h0k
2/T2 + R [(1/T2)2 + wk0

2]}/b 

ps = [h0k R (1 – x0) wk0]/b 

qs = [h0k R (1 – x0)/T2)]/b

 b = 4 h0k
2 (1/T2) + R (1 + x) [wk0

2 + (1/T2)2] 



What happens in the long-time limit, with coupling to a bath?

The results are not equivalent when expressed in the same basis set 
by direct calculation or by change of basis. 
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rkk,eq

rkk,s

h0k, psec-1

Excited-state population as a function of the 
off-diagonal element of the Hamiltonian
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rkk,eq

rkk,s

T2, psec

Excited-state population as a function of the 
dephasing time T2



Differences between ru(t) and ru(t)¢
Varied T2 for HCl in argon at 105 K, starting in rotational ground state

Allow for dephasing, population relaxation—no longer a pure quantum state

t (psec) t (psec) 

These results are compared in the same basis set; 
in this case it is the unperturbed basis.



Implications for electronic transitions due to
very fast perturbing pulses



Excited 
states

Ground 
state

Greg Stewart/SLAC National Accelerator Laboratory, physics.org
https://phys.org/news/2018-07-ultra-high-speed-electron-camera-molecules-crossroads.html

aj(t), ak(t)

bj(t)

bk(t)

Our expectation:  Probability amplitudes given by nonadiabatic 
coefficients evolve on excited state potential surfaces, while 
those given by the adiabatic coefficient evolve on the ground 
state surface!

Conical intersection

Light
Flash



Connection to next speaker:
Diptarka Hait, Martínez Group, Department of Chemistry, Stanford 
University

Among Diptarka’s research interests: Nonadiabatic dynamics, electronic 
excited states, computational spectroscopy

Also relevant:  B. Mignolet, B. F. E. Curchod, and T. J. Martínez,
XFAIMS:  eXternal Field Ab Initio Multiple Spawning for electronic nuclear 
dynamics triggered by short laser pulses, J. Chem. Phys. 145, 191104 
(2016).  Vibrational wave packets shift during a pulse

An incidental connection:  
Excited state relaxation 
pathways of organic radical 
ions, for applications in 
photocatalysis



Dr. Anirban Mandal

Dr. Xiaoping Li

Prof. Evangelos Miliordos 
(Auburn)

Dr. Janelle Bradley Dr. Sasha North

Dr. Hua-Kuang Lee

Nathan Jansen John Buhl

Garrett Mai, Ashley Siegmund, Scott Gilbert, 
Corbin Fleming-Dittenber, Zyk Hlavacek, Drew 
Scheffer, Jessica Messing, Aidan Gauthier, 
Matt Loucks, [David Wang, and Julia Egbert]

Sara Jovanovski

Nathan Jansen 5th year Ph.D. 
student, currently working on 
adiabatic quantum computing



Acknowledgments: 
 National Science Foundation Grant CHE-1900399
 National Science Foundation Grant CHE-2154028

     Thanks for the invitation to speak in the VISTA series!

     Thanks for Letters of Collaboration to NSF from:       
 

Prof. Ben Levine    Prof. Richard Zare     Prof. Elad Harel  Prof. Warren Beck Prof. Marcos Dantus
       Stony Brook        Stanford        MSU       MSU     MSU



Ee(r, t)  = -Ñj(r, t) - ¶A(r, t)/¶t    
Be(r, t) = Ñ ´ A(r, t)

Gauge transformation: 
A(r, t) ® AL(r, t) = A(r, t) + ÑL(r, t) 
j(r, t) ® jL(r, t) = j(r, t) – ¶L(r, t)/¶t 

Result:  No change in E(r, t) or B(r, t)

GAUGE ISSUES



Effect of a gauge transformation on the molecular 
Hamiltonian:
 H = S [pa – qa A(ra)]2/(2ma)
   a 
     + VC – ò d3r r(r, t) ¶L(r, t)/¶t
 
But L(r, t) exists only on paper!  How can it affect the 
energy?
It gets worse . . . 



H atom, 1s: á y1s | jL(r, t) | y1s ñ = Cw f1s(k) exp(-iwt)
H atom, 2s: á y2s | jL(r, t) | y2s ñ = Cw f2s(k) exp(-iwt)

    k        f1s(k)      f2s(k)
    1       16/25         0
    2         1/4      21/625 
    3      16/169       17/1250
    4        1/25         465/83521
    5      16/841     147/57122

A. Mandal and K. L. C. Hunt, J. Chem. Phys. 144, 044109 (2016).



“How can 
we know 
the dancer 
from the 
dance?”
W. B. Yeats

Photo from 
catzenspace.com/2013/08/



 H = S [pa – qa A(ra)]2/(2ma) + VC 
    a    
     – ò d3r  r^ (r, t) ¶L(r, t)/¶t
    + (e0/2) ò d3r [E^

2(r, t) + c2 B2(r, t)] 
     + e0 ò d3r [Ñ× E(r, t)] ¶L(r, t)/¶t 

Now apply Gauss’s law to the expectation values.  
The expectation values of the gauge-dependent term 

in the molecular Hamiltonian and the gauge-
dependent term in the field Hamiltonian cancel!

A. Mandal and K. L. C. Hunt, J. Chem. Phys. 144, 044109 (2016).



 H = S [pa – qa A(ra)]2/(2ma) + VC 
    a    
    + (e0/2) ò d3r [E^

2(r, t) + c2 B2(r, t)] 

We can split H into an energy operator for the 
molecule + an energy operator for the field, 

both with gauge-independent expectation values.

Molecular Hamiltonian:  Coulomb gauge
Field Hamiltonian:  Transverse fields

A. Mandal and K. L. C. Hunt, J. Chem. Phys. 144, 044109 (2016).


