Investigating Jahn-Teller Distortion in CH_{4}^{+}with Timeresolved X-ray Absorption

Diptarka Hait
Stanford Science Fellow (PhD, UC Berkeley)

Ground vs Excited states

Variational Theorem

The ground state energy is the lowest possible energy that can be obtained from any candidate wavefunction.

- Ground state methods minimize energy.
- Not typical for excited states!
- Usual path: Linear response on ground state
- Examples: TD-DFT, EOM-CCSD etc.

Variational collapse

- Excited states are normally saddle points of energy.
- Orbital optimization (OO) often results in collapse to ground state.

Extremization \rightarrow Minimization

- Objective: Find some energy E that is stationary vs orbitals θ and corresponds to an excited state configuration.
- Solution: All stationary points are global minima of

$$
\Delta=\left|\overrightarrow{\nabla_{\theta}} E\right|^{2}
$$

- Square Gradient Minimization (SGM) preserves ground state scaling, with a slightly larger prefactor.

SGM converges to excited states

Also successfully applied to charge-transfer, double excitations, etc.

Accurate core-excitations with OO-DFT

X-ray absorption without shifts

Jahn-Teller distortion in methane cation

Spatially degenerate electronic states in nonlinear molecules undergo nuclear displacements that reduce symmetry.

Transient X-ray absorption schematic

- Timescale: ~C-H vibrations
- Distortion destabilizes SOMO
- Bright $1 \mathrm{~s} \rightarrow \mathrm{SOMO}$ signal can show dynamics

Experiment and Theory agree!

Signal evolves on bending timescales

Tracing the evolution of the SOMO

Кбıәиョ би!sеәлэи|

Summary of methane cation dynamics

- Jahn-Teller distortion takes ~ 10 fs
- Activates scissoring about smallest bond angle
- Scissoring changes bonding character
- Coherence damped in ~ 60 fs

Conclusions

How to Train Your
Excited State

LR-TDDFT
No double excitations
Huge CT errors
$>10 \mathrm{eV}$ shift needed for XAS

Effectively used to model transient X-ray absorption experiments

More comparisons to experiment needed to characterize limitations

OO-DFT can cheaply model challenging excitations

Acknowledgements

Theory:

Prof. Martin Head-Gordon Leo Cunha Prof. Todd Martinez
Prof. Yuezhi Mao

Experiment:

Prof. Steve Leone
Dr. Enrico Ridente
Dr. Andrew Ross
Prof. Dan Neumark Eric Haugen and many others!

Office of Science

References

Theory

1. Hait, D.; Head-Gordon, M. "Excited state orbital optimization via minimizing the square of the gradient: General approach and application to singly and doubly excited states via density functional theory." J. Chem. Theory Comput. 2020.
2. Hait, D.; Head-Gordon, M. "Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining Subelectronvolt Error from a Restricted Open-Shell Kohn-Sham Approach." J. Phys. Chem. Lett. 2020.
3. Hait, D.; Haugen, E.A.; Yang, Z.; Oosterbaan, K.J.; Leone, S.R.; Head-Gordon, M. "Accurate prediction of core-level spectra of radicals at density functional theory cost via square gradient minimization and recoupling of mixed configurations." J. Chem. Phys. 2020.
4. Hait, D.; Head-Gordon, M. "Orbital Optimized Density Functional Theory for Electronic Excited States." J. Phys. Chem. Lett. 2021.
5. Cunha, L.A.* ; Hait, D.* ; Kang, R.; Mao, Y. Head-Gordon, M. "Relativistic Orbital Optimized Density Functional Theory for Accurate Core-Level Spectroscopy. J. Phys. Chem. Lett. 2022.

Application

1. Ridente, E.* ; Hait, D.* ; Haugen, E.A.; ; Ross, A.D.; Neumark, D.M.; Head-Gordon, M. ; Leone, S.R. "Femtosecond Symmetry Breaking and Coherent Relaxation of Methane Cations at the Carbon K-Edge." Science. 2023.
2. Ross, A.D.* ; Hait, D.* ; Scutelnic, V.; Haugen, E.A.; Ridente, E.; Balkew, M.B.; Neumark, D.M.; Head-Gordon, M. ; Leone, S.R. "Jahn-Teller Distortion and Dissociation of $\mathrm{CCl}_{4}{ }^{+}$by Transient X-ray Spectroscopy Simultaneously at the Carbon K- and Chlorine L-Edge." Chem. Sci. 2022.
3. Haugen, E. A.; Hait, D.; Scutelnic, V.; Xue, T.; Head-Gordon, M.; Leone, S. R. "Ultrafast X-ray Spectroscopy of Intersystem Crossing in Hexafluoroacetylacetone: Chromophore Photophysics and Spectral Changes in the Face of Electron-Withdrawing Groups." J. Phys. Chem. A 2023.
4. Toulson, B. W.*; Hait, D.*; Faccialà, D.; Neumark, D. M.; Leone, S. R.; Head-Gordon, M.; Gessner, O. Probing Cl Bond Fission in the UV Photochemistry of 2-lodothiophene with Core-to-Valence Transient Absorption Spectroscopy. J. Chem. Phys. 2023.

* Authors contributed equally

