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Generalization to N electronic States

    (HD Meyer & WH Miller, JCP 1979)

    Consider t-dep Schrödinger equation for N 

electronic states, with nuclei following trajectory 

R(t):     

      *
   

                                    = diabatic electronic

    matrix 

Let           and define

then Hamilton’s (classical) equations of motion 

are equivalent to the above t-dep Schrödinger 

Eqn.*
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Thus the classical electronic Hamiltonian for 

nuclear position R is

 

and the total (vibronic) Hamiltonian for electronic 

and nuclear dof is

If one proceeds classically, i.e., the usual quasi-

classical approach, one runs classical trajectories 

with the usual initial conditions for the nuclei, and

            if     is the initial electronic state

             RN ,

and histograms the final qu. nos. as usual.

A number of applications were carried out in early 

1980’s
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Useful (esp for SEMIclassical 

implementations) to change to Cartesian 

electronic variables: 

• NOTE:

•  Stock and Thoss (1997) gave a derivation of this 

‘classical’ vibronic Hamiltonian which shows that it 

is in fact not an approximation, but rather a 

representation of the vibronic system.  I.e., if one 

were to treat this Hamiltonian fully QM’ly, one 

would obtain the exact QM vibronic dynamics.
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More Rigorous Derivation 

Where       ,       are the creation and 
annihilation operators for populating 
electronic state i.

Choosing harmonic oscillators for the 
underlying DOF, one can express the 
creation/annihilation operators in 
terms of Cartesian variables: 

Then: 



NOTE: Even though the nuclei see the 

‘Ehrenfest force; —

—— different electronic transitions have different 

nuclear trajectories [unlike the Ehrenfest/mean 

field approximation]   

m ˙ ̇ R (t) = - ck (t)*
¶H k,k '(R)

¶R
 ck '(t)

k,k '=1

N

å







Cf. Quantum Transition Probability



Notable	Improvement!	

		

SQC	using	Gaussians:	
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Results for Test Models





Spin-Boson Results 
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Symmetric, High Temp Symmetric Low Temp

Asymmetric, High TempAsymmetric, Low Temp

SQC, γ=0.366 (solid line) 

versus QM (dots) 



Example:  Full Classical MM/SQC 
MD Simulation versus Full QM Result

• Asymmetric spin-boson problem (                            
) at low temperature (weak coupling) 

Same, but with 10x 
timescale

“Coherent” decay to 
equilibrium distribution



Detailed Balance 
(see Miller & Cotton, JCP 142 131103 (2015)

• Easy to show that the MM/SQC model provides 
a good description of detailed balance (DB)  

• Consider a simple model of two electronic states 
having energies ε1 and ε2 (independent of 
nuclear coordinates), coupled to a classical 
stochastic bath at temperature T (which drives 
the electronic states to Boltzmann equilibrium 
as            )
– The DB condition is therefore:  

(1) 
– This model was used by Tully et al. (JCP, 2006) to 

demonstrate how surface hopping (SH) treats DB, 
the primary conclusions from this prior work being 
that:  

1) “Surface hoping” does a good job of describing Eq. 
(1) correctly  

2) “Ehrenfest dynamics” gives a probability distribution 
of the final electronic action variables as 

(2)
which when used in the standard/traditional Ehrenfest 

way, i.e. 
                                                           ,    

gives a very poor description of detailed balance  



Detailed Balance (con’t) 

• But when the electronic populations which 
result from “Ehrenfest Dynamics” (Eq. (2)) are 
“processed” quasi-classically (standard QCT, 
SQC, or otherwise)—e.g., by using a histogram 
“box” windowing function of width γ—one 
obtains

i.e., the correct DB condition of Eq. (1) 
independent of γ !  

• And it turns out that this holds for any 
appropriate windowing function (Gaussians, 
histogram boxes, etc.), so long as the same 
windowing function is applied to each of the 
applicable final electronic states   
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2-State Site-Exciton Model 



2-State Site-Exciton Model 
Same parameters, except: 



Note: These and All FMO calculations that follow 

use 10,000 trajectory ensembles

The 7-state FMO model (77K)

(using the SQC triangle windows, 

generalized to arbitrary dimension) 

At 300K, the results 

are even better 
(indicating any issues are 

presumably nuclear QM 

effects):

4-state model (77K)

Also…

5-state model (77K)



Full SQC density matrix

4-state

 FMO model



Manuscript in 
preparation…

Full SQC 

density matrix calculations (con’t)

5-state

 FMO model



24 Pigment/State FMO Trimer  

QM path 
integral



48 
Pigments/States 
FMO Hexamer 

model (fictitious)

96 Pigments/States 
FMO Dodecamer 

model 
(fictitious)

Demonstrative treatment of more 
states 

(SQC triangle windows, generalized)















Issues for Weak Coupling









γ = 1/3 puts the integer actions 

(1,0) and (0,1) at the centroids of 

the triangles









Same 4 Versions (as above)    

Symmetric (ϵ=0) at High Temp:  βΔ=0.1, α=0.09, ωc∆=2.5

Symmetric (ϵ=0) at Low Temp:  βΔ=5, α=0.09, ωc∆=2.5

Asymmetric (ϵ=1) at Low Temp:  βΔ=5, α=0.1, ωc∆=2.5 

Asymmetric (ϵ=1) at High Temp:  βΔ=0.25, α=0.1, ωc∆=1 

Validation on Previous 

Spin-Boson Benchmarks



Same Calculations with Only

1000 Trajectories
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SQC: PYRAZINE
no unique pre-limit
delta function!

A. Raab, G. A. Worth, H.-D. Meyer, and L. S. Cederbaum, J. Chem. Phys. 110, 936 (1999)



SQC vs exact MCTDH calculation

SQC: PYRAZINE









More Rigorous Derivation 

Where       ,       are the creation and 
annihilation operators for populating 
electronic state i.

Choosing harmonic oscillators for the 
underlying DOF, one can express the 
creation/annihilation operators in 
terms of Cartesian variables: 

Then: 



Spin Mapping Model

Extra factors are the only difference 

from the MM Hamiltonian



Some (ancient) History, c. 1978-79

Consider resonance effects in electronic-to-

Rot/vib energy transfer [JCP 68, 4431 (1978]:

1) Does F* react with H2?

2) Quenching of Br* by H2:

_________________________

Cf. classical nuclear motion on B.O. PES’s
                                         B
                                               r

                                                               R                                                                

                                                                         A

                             

                                      C

                              

  

F *+H2

  

F + H2

  

HF + H

  

Wn(r, R)

  

Wn(t) = Wn(r(t),R(t))

  

r(t) ~ cos(wt)



A classical model for electronic degrees 

of freedom (i.e., N electronic states)

cf. McCurdy, Meyer, Miller JCP 1978-79

• Need to treat nuclear and electronically dof 

  on equal footing to have dynamically 

  consistent description.

•       If one treats nuclei classically, one 

   needs to treat electronic dof also clasically 

   [cf. resonance E-V,R transfer in

   

______________

   

Original Approach (Miller & McCurdy JCP 1978)

• 2 level system    spin    system 

• Most general spin    Hamiltonian

 

   

\

  

F *+H2( j = 0)

º 1

2

1

2

Ĥ = a + axŜx  + ayŜy  + azŜz



• Classically,   Sz  ® m

Sy  ® S2 - m2  sinq

Sx  ® S2 - m2  cosq

n º m + 1
2

(= 0 or 1), S2 = 1
2

(1
2

+1) = 3
4

or (1
2

+ 1
2

)2 =1

  

Þ
He (n,q) = nH11 + (1- n)H00

+ n - n2 + l  (H10e
iq + H01e

-iq )

l = S2 - 1
4

 (= 1
2

or 3
4

)

\H(P, R, n,q) = 
P

2

2m
 + Hel (n,q;R)

Hij = Hij (R)



Tully #3
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