Spin-orbit coupling with relativistic MRSF-TDDFT as the first step for developing applications for studying intersystem crossings

Konstantin Komarov, Seunghoon Lee, Tao Tzeng, Cheol Ho Choi

¹Pohang University of Science and Technology, Pohang, South Korea
²California Institute of Technology, Pasadena, California, USA
³York University, Toronto, Canada
⁴Kyungpook National University, Daegu, South Korea

June 24, 2023

Intersystem crossings (ISC), spin-orbit coupling

Phosphorescence is a mechanism utilized in OLED (Organic Light-Emitting Diode)

Thermally Activated Delayed Fluorescence (TADF) also involves ISC and can be employed in OLED

MRSF vs TDDFT, SF-TDDFT

- TDDFT: no doubles, incorrect topology of Conical Intersection CI_{10}
- SF-TDDFT has spin contamination.

Resolved by:

• MRSF-TDDFT¹⁻³: no spin contamination.

[1] S Lee, M Filatov, S Lee, CH Choi, Journal of chemical phys. 2018, 149, 104101
[2] W Park et al, J. Phys. Chem. Lett. 2021, 39, 9720
[3] S Lee et al, J. Phys. Chem. A 2019, 123, 6455

Spin-orbit coupling of Relativistic MRSF-TDDFT

Relativistic two-component Hamiltonian:

$$H = H_0 + H_{\rm SOC}$$

MRSF unperturbed wavefunctions for singlet and triplet states:

The final SOC states and energies are obtained by diagonalization of the matrix

$$\langle \Psi_I^{SM_S} | \hat{H}_0 + \hat{H}_{\text{SOC}} | \Psi_J^{S'M'_S} \rangle$$

Matrix elements of spin-orbit coupling operator (H_{SOC}) $H_{SOC} = H_{en} + H_{ee} = \frac{\alpha^2}{2} \sum_{aA} \frac{Z_A}{r_{aA}^3} \mathbf{l}_{aA} \cdot \mathbf{s}_a - \frac{\alpha^2}{2} \sum_{a} \sum_{b \neq a} \frac{1}{r_{ab}^3} \mathbf{l}_{ab} \cdot (\mathbf{s}_a + 2\mathbf{s}_b)$

Electron-electron

where $\mathbf{l}_{aA} = \mathbf{r}_{aA} \times \mathbf{p}_{a}$ is the angular momentum of the electron *a* relative to the nucleus *A*, the second – to the electron *b*. The \mathbf{r}_{a} , \mathbf{p}_{a} , and \mathbf{s}_{a} are position, momentum and spin operators.

Electron-nuclea

$$\hat{H}_{\rm SOMF}|j\rangle = \langle i|\hat{H}_{\rm en}|j\rangle + \sum_{kl} D_{kl} \left(\langle ik|\hat{H}_{\rm ee}|jl\rangle - \frac{3}{2} \langle ik|\hat{H}_{\rm ee}|lj\rangle - \frac{3}{2} \langle ki|\hat{H}_{\rm ee}|jl\rangle \right)$$

where D_{kl} is the single-particle spin-dependent transition density matrix elements:

$$D_{ij}^{IJ}(1,1) = \langle \Psi_I^{SM_S} | T^{1,1} | \Psi_J^{S'M'_S} \rangle \delta_{M_S,M'_S+1},$$

$$D_{ij}^{IJ}(1,-1) = \langle \Psi_I^{SM_S} | T^{1,-1} | \Psi_J^{S'M'_S} \rangle \delta_{M_S,M'_S-1},$$

$$D_{ij}^{IJ}(1,0) = \langle \Psi_I^{SM_S} | T^{1,0} | \Psi_J^{S'M'_S} \rangle \delta_{M_S,M'_S}.$$

$^{3}P_{1} - ^{3}P_{0}$ Gap of Tin (Sn)

The absolute value of the gap of C, Si, Ge, and Sn in cm⁻¹ as calculated by SOC-MRSF with the effective core potential of SBJKC basis set¹.

	С	Si	Ge	Sn
SOC-MRSF/SBKJC/PBE0	16.5 (1%)	75.7 (-2%)	587.6 (5%)	2051.5 (21%)
Effective nuclear charges ¹	3.9	168	1312	5500
Experiment	16.4	77.1	557.1	1691.8

The effects of all-electron scalar relativity treatment. The absolute value of the gap of Sn in cm⁻¹

	DK	
	1st	2nd
M06-2X/x2c-TZVPall	1757 (4%)	1750 (3%)

Employed 1st and 2nd order Duglas-Kroll relativistic corrections for non-SOC MRSF.

SOC-MRSF includes only 1st order DK correction to one-electron spin-orbit integrals.

[1] D. Fedorov, et al, Int. Rev. Phys. Chem. 2003, 22, 551

${}^{3}P_{1} - {}^{3}P_{0}$ Gap of Group IV Elements

Spin-Orbit Couplings of 4-Thiothymine

Table 1.	Spin-orbit	couplings	of 4-thiothy	mine
	1		J	

	MRSF/ PBE0 /6-31G(d) geometry $(S_{1 min})$		MRSF/ BH&HLYP /6-31G(d) geometry (S _{1 min})		
cc-pVTZ with	GMC-QDTP2	SOC-MRSF	GMC-QDTP2	SOC-MRSF	
	cm ⁻¹				
GS / ${}^3\pi\pi^*$	1/1	0/0	1/1	0/0	
GS / 3 n π^*	98/13	82/9	108/12	97/10	
$^{1}\mathrm{n}\pi^{*}$ / $^{3}\pi\pi^{*}$	113/14	109/13	116/13	116/13	
$^{1}\mathrm{n}\pi^{*}$ / $^{3}\mathrm{n}\pi^{*}$	0/0	0/0	2/0	1/0	

The values separated by slash means $M_s = \pm 1 / M_s = 0$.

GMC-QDPT2 is General Multi-Configurational second-order quasidegenerate perturbation theory.

The intersystem crossing probability of Thymine

¹CASSCF NAMD simulation predict ISC in **0.9 ps** for $S_1(^{1}n\pi^*) \rightarrow T_2(^{3}\pi\pi^*)$ and ultrafast $T_2 \rightarrow T_1$

²Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy studies predict IC S2 \rightarrow S1 within **80 fs** and ISC in **3.5 ps** for S₁(¹n π^*) \rightarrow T₁(³ $\pi\pi^*$)

> ³Out previous study predict IC S2 \rightarrow S1 within 30 fs and IC S1 \rightarrow S0 within 6 ps

[1] S. Mai at al, Chem. Phys. 2017, 482, 9
[2] T. J. A. Wolf at al, J. Phys. Chem. A 2019, 123, 6897
[3] W. Pack et al, J. Phys. Chem. Lett. 2021, 12, 4339

Feature plans:

• NAMD with IC and ISC together

9

- Optimizing XC for MRSF-TDDFT
- Improving MRSF

Conclusion

- We have developed SOC-MRSF-TDDFT.
- SOC-MRSF calculations of the ${}^{3}P_{1}$ - ${}^{3}P_{0}$ gap and of 4-thiothymine both yielded accurate and consistent results with experimental data and high-level theories.
- In the study of Thymine, the majority of excited state populations remain near $S_{1 \text{ min}}$, increasing the chance of intersystem crossing due to the proximity to the S_1/T_1 crossing and existing spin-orbit coupling.
- SOC-MRSF can be a promising protocol for SOC-involved nonadiabatic molecular dynamics (NAMD), especially for large molecules.

The team

Michael Filatov Cheol Ho Choi

Theoretical Chemistry Lab Kyungpook National University

Thank you for your attention!