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Kretchmer Group: New simulation methods for
electron dynamics in complex environments

Method Development 
Development

Chemical Dynamics in Optical Cavities

Transport Dynamics in Correlated Materials 

Electron Dynamics in Weakly Bound Systems

Multi-faceted research group working at the interface 
of electronic structure and quantum dynamics

Classically Isomorphic Methods Real-Time Electronic Structure

Map a complicated quantum system to a 
computationally tractable classical system

Solve the time dependent Schrödinger 
equation – Quantum embedding

Quantum mechanics Classical mechanics

+

Subsystem coupled to large environment

Subsystem coupled to small environment

Charge-transport in perovskites Spin-transport across interfaces

Explicit electron in fully 
atomistic simulation

Examine electron-nuclear, electron-electron, and spin-spin 
interactions in governing the non-equilibrium transport of electrons

Magnetic tunnel 
junctions

Chirality-induced 
spin selectivity

P +

P-

Investigate the influence of quantum light on chemical dynamics

• Strong coupling between a molecular system and quantized modes of 
light can modify the energy landscape

• High-temperature Bose-Einstein condensates as a “quantum solvent” 
to modify chemistry based on charge-transfer

Ionization of a core electron initiates competing ultrafast 
electronic processes that lead to fragmentation in VdW and 

H-bonded systems

+

+ +
+

+

ICD

ETMD

A A BB

Interatomic 
Coulomb Decay

ET Mediated 
Decay



Non-Equilibrium Electron Dynamics

Photoexcited Materials Spin Dynamics and Selectivity

Laser Driven Electron Dynamics

Electronic motion even in the 
absence of nuclear motion



Non-Equilibrium Electron Dynamics

Photoexcited Materials Spin Dynamics and Selectivity

Laser Driven Electron Dynamics

Develop efficient and accurate 
method for the direct simulation 
of the electronic wavefunction
in strongly correlated systems



Quantum Embedding

Obtain accurate properties of a small subsystem without 
performing expensive calculation on the full system
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Quantum Embedding

Obtain accurate properties of a small subsystem without 
performing expensive calculation on the full system

How to account for effects of the surrounding environment?



Density Matrix Embedding Theory

Surrounding environment treated as a quantum bath of the 
same size as the subsystem – Schmidt Decomposition

Schmidt decomposition:

Start with product of subsystem (𝐴𝑖) 
and environment (𝐵𝑗) states in 

LARGE space of dimension Na x Nb



Density Matrix Embedding Theory

Surrounding environment treated as a quantum bath of the 
same size as the subsystem – Schmidt Decomposition

Schmidt decomposition:

Start with product of subsystem (𝐴𝑖) 
and environment (𝐵𝑗) states in 

LARGE space of dimension Na x Nb



Density Matrix Embedding Theory

Surrounding environment treated as a quantum bath of the 
same size as the subsystem – Schmidt Decomposition

Schmidt decomposition:

Start with product of subsystem (𝐴𝑖) 
and environment (𝐵𝑗) states in 

LARGE space of dimension Na x Nb

End with product of subsystem ( ሚ𝐴𝛼) 
and new environment ( ෨𝐵𝛼) states in 
SMALL space of dimension Na x Na



Density Matrix Embedding Theory

Surrounding environment treated as a quantum bath of the 
same size as the subsystem – Schmidt Decomposition

Schmidt decomposition:

Start with product of subsystem (𝐴𝑖) 
and environment (𝐵𝑗) states in 

LARGE space of dimension Na x Nb

End with product of subsystem ( ሚ𝐴𝛼) 
and multi-electron bath ( ෨𝐵𝛼) states in 

SMALL space of dimension Na x Na



Density Matrix Embedding Theory

Surrounding environment treated as a quantum bath of the 
same size as the subsystem – Schmidt Decomposition

+

Schmidt 

Decomposition 

Start with product of subsystem (𝐴𝑖) 
and environment (𝐵𝑗) states in 

LARGE space of dimension Na x Nb

End with product of subsystem ( ሚ𝐴𝛼) 
and multi-electron bath ( ෨𝐵𝛼) states in 

SMALL space of dimension Na x Na



Density Matrix Embedding Theory

Surrounding environment treated as a quantum bath of the 
same size as the subsystem – Schmidt Decomposition

+

Schmidt 

Decomposition 

The good: in principle have a method to exactly embed a 
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Density Matrix Embedding Theory

Surrounding environment treated as a quantum bath of the 
same size as the subsystem – Schmidt Decomposition

+

Schmidt 

Decomposition 

The good: in principle have a method to exactly embed a 
fragment in a bath of the same size as the fragment itself

The bad: knowledge of the exact wavefunction is needed 
to construct the bath states



Density Matrix Embedding Theory

Surrounding environment treated as a quantum bath of the 
same size as the subsystem – Schmidt Decomposition

+

Schmidt 

Decomposition 

The Fix – Static DMET:
1. Construct the bath states from mean-field wavefunction on the total system
2. Perform correlated calculation utilizing these bath states
3. Introduce self-consistency between mean-field wavefunction and correlated 

calculation – one-electron reduced density matrix



Real-Time DMET

+

Schmidt 

Decomposition 

Approximate 

bath statesY(t) =



Real-Time DMET

+

Schmidt 

Decomposition 

Approximate 

bath statesY(t) =

• Initial formulation utilized time-dependent variational principle to 
derive equations of motion for embedding wavefunction

• Equations of motion bare resemblance to time-dependent CAS



Multi-Fragment Extension

Separate correlated embedding calculations all derived 
from same total-system mean-field calculation

“Stitch” together embedding calculations through 
democratic partitioning of operators

ො𝑎𝑖
† ො𝑎𝑗 + ො𝑎𝑗

† ො𝑎𝑖 = Ψ𝑥 𝑖 ො𝑎𝑖
† ො𝑎𝑗 Ψ𝑥 𝑖 + Ψ𝑥 𝑗 ො𝑎𝑗

† ො𝑎𝑖 Ψ𝑥 𝑗

Mean-field

𝛾𝑀𝐹 + ۧ|Ψ𝐴

+ ۧ|Ψ𝐵

+ ۧ|Ψ𝐶

+ ۧ|Ψ𝐷

Correlated

𝛾𝑔𝑙𝑜𝑏



Multi-Fragment Extension
Mean-field

𝛾𝑀𝐹 + ۧ|Ψ𝐴

+ ۧ|Ψ𝐵

+ ۧ|Ψ𝐶

+ ۧ|Ψ𝐷

Correlated

𝛾𝑔𝑙𝑜𝑏

Difficulty for Dynamics:
• Conventional DMET matching condition between mean-

field and embedding calculations breaks down
• TDVP does not allow for multiple fragments



Multi-Fragment Extension
Mean-field

𝛾𝑀𝐹 + ۧ|Ψ𝐴

+ ۧ|Ψ𝐵

+ ۧ|Ψ𝐶

+ ۧ|Ψ𝐷

Correlated

𝛾𝑔𝑙𝑜𝑏

Solution:
• Take advantage of a different form of static DMET – projected DMET
• pDMET has an analytical matching condition between 𝛾𝑀𝐹 and 𝛾𝑔𝑙𝑜𝑏

(Yehorova and Kretchmer, JCP 2023)



Real-Time pDMET
Mean-field

𝛾𝑀𝐹(𝑡) + ۧ|Ψ𝐴(𝑡)

+ ۧ|Ψ𝐵(𝑡)

+ ۧ|Ψ𝐶(𝑡)

+ ۧ|Ψ𝐷(𝑡)

Correlated

𝛾𝑔𝑙𝑜𝑏(𝑡)

General Idea: Simultaneously propagate mean-field 
wavefunction of full system and correlated 

wavefunction for each fragment and its bath, such that 
the pDMET conditions are met at each point in time
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Real-Time pDMET
General Idea: Simultaneously propagate mean-field wavefunction of 

full system and correlated wavefunction for each fragment and its bath, 
such that the pDMET conditions are met at each point in time

Condition 1: Bath for each 
fragment obtained from Schmidt 

decomposition of mean-field 1RDM

Condition 2: Mean-field 1RDM 
obtained from natural orbitals of global 

1RDM formed from all fragments

Time-dependence of DMET wavefunction for each fragment:

obtained from TDSE projected into the embedding space

obtained from pDMET conditions at each point in time
(Yehorova and Kretchmer, JCP 2023)



Real-Time pDMET
Mean-field

𝛾𝑀𝐹(𝑡) + ۧ|Ψ𝐴(𝑡)

+ ۧ|Ψ𝐵(𝑡)

+ ۧ|Ψ𝐶(𝑡)

+ ۧ|Ψ𝐷(𝑡)

Correlated

𝛾𝑔𝑙𝑜𝑏(𝑡)

• Exact in non-interacting limit
• Exact in large subsystem limit
• Allows for correlation between subsystem and environment
• Do not need to specify specific area of high accuracy

(Yehorova and Kretchmer, JCP 2023)
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rt-pDMET:

U > 0

U = 2 U = 3 U = 4

Real-time pDMET converges to the exact answer 
even in the strongly correlated regime

N = 60

(Yehorova and Kretchmer, JCP 2023)
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Real-time pDMET accurately treats all regions of 
space even for a disordered system

(Yehorova and Kretchmer, JCP 2023)



Laser-Driven Electron Dynamics
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Multi-dimensional Impurity Model

(Yehorova and Kretchmer, JCP 2023)



Conclusions

Mean-field

𝛾𝑀𝐹(𝑡) + ۧ|Ψ𝐴(𝑡)

+ ۧ|Ψ𝐵(𝑡)

+ ۧ|Ψ𝐶(𝑡)

+ ۧ|Ψ𝐷(𝑡)

Correlated

𝛾𝑔𝑙𝑜𝑏(𝑡)

Real-time projected density matrix embedding theory

• Multi-fragment real-time quantum embedding method

• Non-equilibrium electron dynamics in strongly correlated systems

• Accurately treat dynamics across entire system

(Yehorova and Kretchmer, JCP 2023)
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