02/15/2023 VISTA

Factorized electron-nuclear dynamics with an effective complex potential

S. Garashchuk, J. Stetzler, V. Rassolov Dept of Chemistry & Biochemistry University of South Carolina, Columbia, USA

Outline

- 1. Motivation and background
- 2. Nuclear subspace-factorized wavefunctions
- 3. Vibrationally non-adiabatic model
- 4. Summary

Nuclear quantum effects (NQE)

hard NQE: tunneling

Fe-O

[0] 6] -0.4

F=-0

Cpd II

-0.2

-0.6

0.06

0.05

0.04

0.03

0.02

0.01

3.5

3

Kinetic Isotope Effect in Cytochrome P450 Decarboxylase OleT

Experiments at T=[4,21]C at transient step: KIE \sim 8–16; E_a=16/32 kJ/mol

[moderate tunneling; tunneling-ready state]

Dutra, Amaya, McElhenney, OManley, Makris, Rassolov, SG J. Phys. Chem. B 126 (2022); J. Phys. Chem. A 126 (2022)

H/D substitution reduces polymer crystallinity of P3HT when D on main chain, but not on side chain

 $[\Delta \Delta ZPE \text{ crystal vs chain & NQE on dipoles,} interchain correlation]$

HAT

 $\Delta \tau_{FeO} \gg \Delta \tau_H$

 $\Delta \tau_{FeO}$

Cpd I

Fe

soft NQE: ZPE, anharmonicity

1.5 2

x [a₀]

0.5

2.5

Jakowski, Huang, SG, Hong, Keum, Bobby Sumpter JPCL 2017

electronic excitations + NQE

H/D isotope effect on the optoelectronic properties of P3HT/PCBM

[fluctuations in HOMO-LUMO gaps]

https://www.ornl.gov/news/solar-surprise Nature Comm. 5, 4180 (2013) doi:10.1038/ncomms4180 JCTC 12 (2016) Wang, Jakowski, SG, Sumpter

coherence@photocatalysis

• high yield

- long-lived electronic excitations
- earth-abundant metals in chromopohores
- reversibility, favorable redox energetics
- property and functionality control

Using coherence to enhance function in chemical and biophysical systems

Scholes, G., Fleming, G., Chen, L. et al.. Nature 543, 647–656 (2017).

On the use of vibronic coherence to identify reaction coordinates for ultrafast excited-state dynamics of transition metal-based chromophores

Paulus, McCusker Faraday Discussions 237, 274 (2022).

Leveraging excited-state coherence for synthetic control of ultrafast dynamics

Paulus, B.C., Adelman, S.L., Jamula, L. et al. Nature 582, 214–218 (2020).

quantum dynamics ~ quantum nuclei

$$H(t)|\psi(t)\rangle = i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle$$

- NQEs and time-dependent Hamiltonians + exponential scaling of complexity
- take advantage of mass, energy and time-scale separation
- time-dependent bases, multilayer representations, trajectories

established approaches for electrons + nuclei

- Born-Oppenheimer approx. \rightarrow PES
- Classical trajectories for the nuclei
- Multiple electronic PES
- Ehrenfest trajectory dynamics; surface hopping
- Kinetic (non-adiabatic) vs potential (diabatic) formulation

Derivatives of PES w/r to nuclear positions are zeros

Backreaction from nuclear to electronic DOFs PESs cross; Berry phase

Not exact, non-unique

a trajectory frame for controllable approximations

want to include the **dominant NQEs** within

Exact quantum trajectories (**q**, **p**)

$$\frac{d\boldsymbol{q}}{dt} = \frac{\boldsymbol{p}}{m} \qquad \boldsymbol{p} = \boldsymbol{\nabla}(\arg\psi)|_{\boldsymbol{x}=\boldsymbol{q}}$$

trajectory 'weight' conservation

solve for the nuclei and electrons together

- Nuclear-electronic orbital (NEO) method
- Electron-nuclear dynamics (END); multi-configuration END
- Exact factorization (XF), TDPES, conditional WF

• Nuclear subspace factorized END with effective complex potential

Deumens and Öhrn "Electron-nuclear dynamics with diabatic and adiabatic wave packets," J. Phys. Chem. 92, 3181–3189 (1988) Wang et al Multi-configuration electron–nuclear dynamics: An open-shell approach J. Chem. Phys. 155, 154103 (2021)D

Tunneling via WF coherence

XF- and QT- inspired fast/slow factorization

separate TDSEs via a complex potential

$$V_{d} := V_{r}(y, t) + iV_{i}(y, t)$$

$$\Phi \underbrace{\left[(\hat{K}_{y} + V_{d})\psi - i\partial_{t}\psi\right]}_{=0, \ nuclear \ TDSE} + \psi \underbrace{\left[(\hat{K}_{x} + \hat{K}_{y} - \frac{1}{M}\frac{\nabla_{y}\psi}{\psi}\nabla_{y} + V - V_{d})\Phi - i\partial_{t}\Phi\right]}_{=0, \ electronic \ TDSE} = 0$$

$$\psi(y,t) = \sqrt{\rho(y,t)}e^{is(y,t)}$$

conditions

$$\partial_t N(y) = -i(\langle \Phi | (\hat{D}_1 + \hat{D}_2) \Phi \rangle_x - \langle (\hat{D}_2 + \hat{D}_1) \Phi | \Phi \rangle_x - 2V_i N(y)$$

$$\partial_t \rho + \frac{\nabla_y s}{M} \nabla \rho + \frac{\nabla_y^2 s}{M} \rho - 2V_i \rho = 0$$

derivation ...

results

trajectory follows the <u>average momentum</u> in *y* (normalized by the electronic density at y)

$$p_t = \nabla_y s + \overline{p_\Phi}$$

$$p_{\Phi} := \nabla_y(\arg \Phi)$$

imaginary potential

$$V_i = \Im(\langle \Phi(\hat{D}_2 + \hat{D}_1)\Phi \rangle) = -\frac{\nabla_y \overline{p_\Phi}}{2M} - \frac{\overline{p_\Phi}}{M} \frac{\nabla_y |\psi|}{|\psi|}$$

real potential driving dynamics

$$\Phi \underbrace{\left[(\hat{K}_y + V_d)\psi - \imath\partial_t \psi \right]}_{=0, \ nuclear \ TDSE} + \psi \underbrace{\left[(\hat{K}_x + \hat{K}_y - \frac{1}{M} \frac{\nabla_y \psi}{\psi} \nabla_y + V - V_d) \Phi - \imath\partial_t \Phi \right]}_{=0, \ electronic \ TDSE} = 0$$

try to 'minimize' change in S (energy)

 $\langle \partial_t S \rangle_x = 0 \text{ or } \langle dS/dt \rangle_x = 0$ $S = \arg \Phi$

does not track y-motion *Eulerian*

$$V_r = \underbrace{\bar{H}_{el} + \Re(\bar{D}_2) + \frac{\overline{p_{\Phi}} \nabla_y(\arg\psi)}{M} - \frac{p_t}{M} \overline{p_{\Phi}}}_{Lagrangian} - \frac{p_t}{M} \overline{p_{\Phi}}}_{\text{removes 1st derivative coupling}}$$

 $\frac{d\overline{p_{\Phi}}}{dt}$ *minimize the nuclear momentum of electronic WF:* set to zero

$$\left(\overline{n_{\Phi}}\right)^2$$

$$V_r^{(e)} = \overline{H_{el}} + \overline{U_{\Phi}} + \frac{p_{\phi}^2}{2M} + \frac{\overline{p_{\Phi}}p_{\psi}}{M} - \frac{(\overline{p_{\Phi}})^2}{M}$$

Intermediate 'electronic' frame works best (model)

initialize the nuclear WF

so that electronic WF has zero nuclear momentum

$$z(y,0) = \frac{\int \Psi^*(x,y,0) \nabla_y \Psi(x,y,0) dx}{\int |\Psi(x,y,0)|^2 dx}$$
$$\psi(y,0) = N_\psi \exp\left(\int_{-\infty}^y z(y',0) dy'\right)$$
$$\overline{p_\Phi} = \mathbf{0}$$

- uniform electronic norm
- exact in one nuclear DOF
- can be done at all times
- ideal or 'exact'

KST model two-dimensional Gaussian dynamics

$$V = \frac{k(x-y)^2}{2} + \frac{Ky^2}{2}$$

 $\psi(\boldsymbol{x},t) = N_0 \exp\left(-(\boldsymbol{x}-\overline{\boldsymbol{x}}_t)\mathbf{A}_t(\boldsymbol{x}-\overline{\boldsymbol{x}}_t)/2 + \imath \overline{\boldsymbol{p}}_t(\boldsymbol{x}-\overline{\boldsymbol{x}}_t) + \imath s_t + \gamma_t\right)$

complex effective potential

Lagrangian frame; exact: = ideally factorized; $V^{(0,1,2)}$:= kinetic energy in V_r

'exact' corresponds to zero imaginary potential (1 DOF)

$$\nabla_y V_r = \langle \nabla_y V \rangle_x + \frac{1}{M} \left(2r_\psi + \nabla_y \right) \langle r_\Phi^2 + p_\Phi^2 \rangle_x$$

 $\begin{array}{l} \text{condition on } V_r \\ \text{frame-independent} \end{array}$

 p_{φ} , nuclear momentum of electronic function and its dispersion are good measures of efficient factorization

Summary:

- QT -- momentum from phase -- define compact WF representations for the 'BO-andbeyond' exact, approximate, mixed quantum dynamics
- Conservation properties at the expense of complex effective nuclear potential
- Imaginary potential is frame-independent; depends on nuclear momentum of electronic wavefunction
- Frame of reference affects V_i amplitude and dynamics stability
- There is (for 1D) an ideally factorized dynamics with zero V_i and frame-independent V_r
- Beyond 1D: intermediate frame, dropping the kinetic energy terms in V_r work the best

Future:

- The role of the residual nuclear phase in the electronic wavefunction; simplifications
- The role of the kinetic energy, including the quantum potential terms
- Test systems and chemical models

Thank you VISTA organizers and participants!

Questions?

Propagation scheme for exact implementation

- 0. initialize nuclear WF
- 1. define Vd
- 2. update by dt the nuclear SE with complex potential
- 3. update by **dt** the full WF exactly
- 4. define the electronic WF at **dt** as (full WF)/(nuclear WF)
- 5. go to 1 and repeat until final time is reached

Gaussian wavepacket

 $\psi(\boldsymbol{x},t) = N_0 \exp\left(-(\boldsymbol{x}-\overline{\boldsymbol{x}}_t)\mathbf{A}_t(\boldsymbol{x}-\overline{\boldsymbol{x}}_t)/2 + \imath \overline{\boldsymbol{p}}_t(\boldsymbol{x}-\overline{\boldsymbol{x}}_t) + \imath s_t + \gamma_t\right)$