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Motivation
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Nonadiabatic dynamics

* The total wavefunction:

Y RE) = ) (@i R(E)
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* The evolution of the electronic amplitudes:
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 Hammes-Schiffer and Tully method:
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» Stochastic hop from state 1 to state j with the hopping probability:

At
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A
Tully, J. Chem. Phys. 1990, 93, 1061
Hammes-Schiffer, Tully, J. Chem. Phys. 1994, 101, 4657-4667
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Challenges Goal

* NA-MD simulations are limited to small-medium * To perform NA-MD calculations for large

sized structures nanomaterials and periodic solids

* Nonadiabatic coupling (NAC) calculations are
computationally expensive to calculate for a large

number of states
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Time-overlap integration

* Grid-based approach using .cubefiles

* Easy to implement o
* Most codes can output these file _ N
* Not suitable for large structures with S ij — l/)i

large number of states _oo

e Double-molecule approach
* Easy to use and can be used in different codes
« Very time-consuming for large structures
* Not suitable for periodic structures

* Analytical approach
* Suitable for large systems and

large number of states
* Recurrence relations for LI B INT
computing integrals: Libint2 package

Smith, Shakiba, Akimov, J. Chem. Theory Comp. 2021, 17, 678—-693
Libint, Version 2.6.0 Edward F. Valeev, http://libint.valeyev.net.
Shakiba, Stippell, Li, Akimov, J. Chem. Theory Compu. 2022, 18, 5157-5180
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Extending to periodic structures and K-points

* The Bloch function for K-point in a periodic structure is defined as:
1 .
Kr) = — E r — R)e'*R
ﬂa( ) '\/N e §0a( )

* Overlaps between Bloch functions of two different K-points:
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MIL-125-NH,

Aradi, Hourahine, Frauenheim, J. Phys. Chem. A 2007, 111, 5678-5684
Shakiba, Stippell, Li, Akimov, J. Chem. Theory Compu. 2022, 18, 5157-5180 6
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Implementation
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Cllus

import os
from libra py import CP2K methods
from libra py.workflows.nbra import step2

# Setup the parameters

params = {'istep': 1, 'fstep': 2000, 'nprocs': 9, 'mpi_ executable': 'srun',
'"lowest orbital': 512-20, 'highest orbital': 512+21,
'res dir': os.getcwd() + '/results', 'isUKS': False,
'is periodic': True, 'periodicity type': 'XY'
'is_spherical': True, 'isxTB': True, 'remove molden': True,
'cp2k _exe': 'cp2k.psmp', 'cp2k ot input template': 'es_ot.inp',
'cp2k_diag_input_ template': 'es_diag.inp',
'trajectory xyz filename': 'C3N4-2x2-pos.xyz'
'cube visualization': True, 'vmd input template': 'vmd.tcl',
'vind exe': 'vmd', 'states_to plot': [512,513],
'plot phase corrected': True, 'remove cube': True}

if params['is periodic']:
params['A cell vector'] [28.483, 0.000, 0.000]

params['B cell vector'] [0.000, 24.669, 0.000]

params['C cell vector'] = [0.000, 0.000, 15.000]

# Set the origin and generate the translational vectors

origin = [0,0,0]

# Number of periodic images per each X, -X, Y, -Y, Z, and -Z directions

num periodic_images = [1,1,1]

params|'translational vectors'] =
CP2K_methods.generate translational_ vectors(origin, num periodic_ images,
params|['periodicity type'])

# Run the calculations
step2.run_cp2k libint step2 (params)
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Applications

 Hot-electron cooling dynamics in silicon nanocrystals (Si NCs)
« Electron-hole recombination dynamics in metal organic frameworks and carbon nitride
monolayers
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Shakiba, Stippell, Li, Akimov, J. Chem. Theory Compu. 2022, 18, 5157-5180
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Hot-electron cooling dynamics in Si NCs
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Core vs surftace atoms

* By increasing size the surface/core DOS
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NA-MD results vs experiment

» Experimental data show a non-monotonic dependence of the relaxation time with respect to NC size
« FSSH and mSDM: Non-monotonic dependence of relaxation time on NC size
« ID-A: Monotonic dependence of relaxation time with increasing NC size
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NA-MD results vs experiment

* By going to larger NCs, the possibility of relaxation happening through non-adjacent states increase

« NA-MD done with only adjacent state transition allowed does not decay for larger structures

« FSSH and mSDM show comparable results but mSDM timescales are larger

« mSDM and FSSH close timescales are due to relatively large dephasing times making correction to
coherent amplitudes verv small but the overall results are in a better agreement with experiments

Siz23H100 SizesH140

w0 llapses periodically to a given

 Within F " gso 150 3
state,1 w?  s% W 3 202 he moment of collapse.

« Becaus ° 20 % 20 %0 3 1w gnnels for non-adjacent state
transit o 20 4 °0 20 40 80 ° o s 100 130 _  ways by destroying the coherences
betwee State index Sta‘teindex S.tate index nerease Of the ID'A energy
relaxai e - 600 —

400 1000

300 400

fs
fs

200 500

S
State index
State index

200

State index

100

0 0 75 150 0 100 200 300

0 50 100 150 Ly :
State index ate index State index

12



tﬁ University at Buffalo The State University of New York

Charge carrier concentration in C,N, monolayers

* Intrinsic charge carrier concentration in
monolayers are in the range of ~101°-10'2 cm™ in
experimental studies

» Theoretical studies overestimate this value due to
simulation of excited states in small cell size
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Molecular orb

« Occupied orbitals are more localized on several melem (triangular repeated motif of 3 fused rings) units

Unoccupied orbitals are delocalized over multiple connected melem units which 1s better observed in

larger supercells
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e-h recombination dynamics in C,N, monolayers
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100 single-particle excitation states are built from all
excitations from the first 10 occupied to the first 10
unoccupied molecular orbitals
NAC values decrease by increasing supercell size

« Small time-overlaps between molecular orbitals in large

supercells

Recombination dynamics becomes size-independent for all
methods for very large supercell sizes
For FSSH and mSDM, the dynamics accelerates in the n-
states model due to presence of more nonradiative channels
for recombination
The dynamics 1s slower in ID-A in the n-states model due to
presence of more nonradiative channels and therefore more
frequent resets of the coherent amplitudes
For larger supercells, the DOS does not play an important
role and the 2- and n-states model show similar results
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e-h recombination dynamics in C,N, monolayers
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100 single-particle excitation states are built from all excitations from the first 10
occupied to the first 10 unoccupied molecular orbitals
NAC values decrease by increasing supercell size

* Small time-overlaps between molecular orbitals in large supercells
Recombination dynamics becomes size-independent for all methods for very large
supercell sizes
For FSSH and mSDM, the dynamics accelerates in the n-states model due to
presence of more nonradiative channels for recombination
The dynamics is slower in ID-A in the n-states model due to presence of more
nonradiative channels and therefore more frequent resets of the coherent amplitudes
For larger supercells, the DOS does not play an important role and the 2- and n-
states model show similar results
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Summary

A new methodology for NA-MD simulations in large nanostructures and periodic solids is
1mplemented 1n the open-source Libra code

* The NAC values decrease by increasing Si NC size and C;N, monolayer supercell size

* A non-monotonic dependence of hot-electron relaxation dynamics on Si NC size was observed
in FSSH and mSDM 1in agreement with experiment

 Non-adjacent transitions play an important role in the relaxation dynamics in Si NCs

« FSSH and mSDM showed similar dynamics in S1 NCs due to high dephasing times

« ID-A showed a monotonic dependence of the relaxation time on NC size which was due to
multiple coherence resets in the dynamics

* By varying charge carrier concentration using different supercell sizes, a saturation of the
recombination timescale was observed showing the size-independence of recombination
dynamics in very large structures

* The results of the dynamics in the 2-states and n-states model showed that the inclusion of
more states in the dynamics increases the recombination rate by providing more nonradiative
channels for the dynamics in the FSSH and mSDM methods

* ID-A showed slower dynamics in the n-states model compared to 2-states model due to

frequent coherence resets in the dynamics .
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Thank You!

Questions?
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