

Can we describe photochemistry without nonadiabatic dynamics?

Elisa Pieri

VISTA February 14, 2023

Paradigms in chemical simulations

How can we get the best of both worlds?

Reactivity prediction

The *ab initio* NanoReactor

Virtual reaction chamber

Accelerated MD

Reaction

Refinement + Kinetic model detection

Reaction network

Stanford University

Wang et al., 2014, Nat. Chem.

What about photochemistry?

o Difficult to catch rare events

There are infinite conical intersections

We need to find all CI types that can be accessed after the photon absorption

Grimme, JCTC (2019)

MECIs represent conformational wells on the seam space

t-SNE analysis on the coordinates of the S₁/S₀ AIMS spawning geometries for benzene FOMO-CASCI(6,5)/6-31G

MECIs <u>seem</u> to be suitable to represent a basin of CIs on the intersection space

The photoproduct search

Kaplan et al., 1968, J. Am. Chem. Soc. Dreyer et al., 1996, Chemistry A European Journal Domcke et al., 2004, Conical Intersections: Electronic Structure, Dynamics & Spectroscopy

\checkmark We found many accessible S₀/S₁ MECIs

FOMO-CASCI(6,5)/6-31G → SA3-CASSCF(6,6)/6-31G* → XMS-CASPT2(6,6)/6-31G*

Stanford University

14

\checkmark Exploration of the S₁/S₂ seam

Exploration of the S_1/S_0 starting from the S_2/S_1 MECIs reaches many of the S_1/S_0 already characterized

 S_1/S_0 MECI7 can only be reached when benzene is excited to S_2

• 1.5 eV lower in energy than MECI1

The photoproduct search

Each MECI leads to different photoproducts

MECI1

Intermediate to Dewar benzene (~20

trans-benzene

kcal/mol barrier)

MECI2

Prefulvene

Intermediate to benzvalene and fulvene (~2 and ~15 kcal/mol barriers)

benzene benzvalene trans-benzene

prefulvene

A crude model to estimate quantum yields

Probability of forming photoproduct *j*

Probability of reaching the *i-th* CI

$p(P_j) = \sum_i p(I_i)p(P_j I_i)$	$p(I_i) = \frac{1}{Q}e^{-1}$	$\frac{\Delta E}{K_B T}$
Probability of forming <i>j</i> from <i>i</i>		

<u>QY(benzvalene)</u>	
Theo.=0.10	
Exp. = 0.04	

<u>QY(Dewar benzene)</u> Theo.=0.005 Exp. = 0.006

Approximations:

- Equilibrium between the MECIs
- Each part of the cone is equally accessible
- Temperature estimated from the kinetic energy as $K = E_{FC} E_{S_1MIN}$

• Dynamics in the photoproduct search phase (instead of optimizations)

Stanford University

A. Optimization only

• Dynamics in the photoproduct search phase (instead of optimizations)

Include the transformation of intermediates into final products → branching ratios

Stable (final) photoproducts

- Dynamics in the photoproduct search phase (instead of optimizations) ٠
- Impact of conical intersection topography ٠

$$\vec{S} = \lim_{R_0 \to R_{CI}} \nabla \left(\frac{E_1(R) + E_2(R)}{2} \right) \Big|_{R=R_0}$$

 $\sigma = \text{length of the projection of } \vec{S}$

$$\begin{cases} \sigma = 0 \Rightarrow \text{ideally peaked CI} \\ \sigma > 0 \Rightarrow \text{more and more sloped CI} \end{cases}$$
Peaked VS. Sloped
Benzene S_0/S_1 MECIs \Rightarrow 3 sloped, 3 peaked

Benzene S₀/S₁ MECIs \rightarrow 3 sloped, 3 peaked

- Dynamics in the photoproduct search phase (instead of optimizations)
- Impact of conical intersection topography
- Sampling from the whole intersection seam instead of just MECIs

- Dynamics in the photoproduct search phase (instead of optimizations)
- Impact of conical intersection topography
- Sampling from the whole intersection seam instead of just MECIs

Is there a relationship between the selectivity of a CI and its topography?

Conclusions

So many remaining questions on the foundations of photochemistry!

FINDINGS:

- Qualitatively accurate, even for rare photoproducts, through systematic sampling.
- Quantitative description \rightarrow work in progress!
- Great exploration tool

Experimental results reproduced.

Acknowledgements

Lake Shasta 2022

Stanford University

✓ Todd Martinez
 ✓ Keiran Thompson
 ✓ Dean Lahana
 ✓ Alex Chang
 ✓ Cody Aldaz
 ✓ Alessio Valentini
 ✓ Ethan Curtis

Thank you for listening!

Questions??

The other MECIs

Open question: how "rare" each MECI type is?

1,3-cyclopentadienylcarbene

Info on crude model

$$Q = \sum_{i} e^{-\frac{\Delta E_i}{k_B T}}$$

$$K = \Delta E = E_{FC} - E_{S_1 MIN}$$

$$T = \frac{K}{\frac{1}{2}(3N-6)k_BT}$$

