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Adapted from G.R. Fleming & P.G. Wolynes, Phys. Today (1990), vol. 43, p. 36



  

DynEMol 
(Dynamics of Electrons in Molecules)

●  Motivation 

●  Self-Consistent Quantum-Classic Method for excited-state 

dynamics of Molecular and Extended Systems

●  Applications

● Intramolecular Vibration Relaxation (IVR)

● Photoinduced Isomerization

● Photoinduced Proton Transfer

● Interfacial Electron Transfer

● Spin Dynamics Effects 3
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Theoretical Method and Models
Our goal: 

Modelling electron quantum dynamics in large molecular systems

➔ Combines: 

Molecular Mechanics and tight-binding semi-empirical methods

➔ Wavepacket propagation of charge excitation
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Nonadiabatic Excited-State Dynamics with Dynemol 

JPC-C, 2016, 120, 27688.
JPC-L, 2018, 9, 5926.

JPC-C 2016, 120, 27688.

JPC-C 2011, 115, 15617.

JPC-L, 2015, 6, 4927.
JPC-C, 2019,123, 5692.

Effects of UV radiation 
on DNA strands

Nano Lett. 2021, 21, 8190.
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Methodologies of Non-adiabatic Molecular Dynamics

B. F. E. Curchod, U. Rothlisberger, and I. Tavernelli. ChemPhysChem 2013, 14, 1314-1340
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CSDM = Coherent Switches with Decay of Mixing 

J. Chem. Theory Comput. 2020, 16, 3464−3475
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CSDM = Coherent Switches with Decay of Mixing 
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 Trajectory-Based Dynemol Method

Hybrid Quantum-Classical Dynamics:

Classical dynamics for the nuclei:

Coherent quantum dynamics for the electrons:
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Classical Nuclear Dynamics in the GS



  

                      Quantum-Classical Coupling 

JPCC 2016, 120, 27688.
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Coherent Switches with Decay of Mixing (CSDM)
● Hybrid quantum-classical hamiltonian:

● Adiabatic representation:                             ,                                 , 

● Electronic density matrix:

● Conservation of energy for the hybrid hamiltonian:
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Coherent Switches with Decay of Mixing (CSDM)

● Conservation of energy for the hybrid hamiltonian:
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Mean-Field Ehrenfest Method
● Coherent electronic dynamics:

● Ehrenfest Mean-Field Force

● Energy conservation:
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Fewest Switches Surface Hopping (FSSH)

● Surface Hopping Force

● Fewest Switches transition probability:

● Nuclear velocity rescaling due to transition           
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Coherent Switches with Decay of Mixing (CSDM)

● Decoherence effect on the electronic dynamics:

● Define Pointer State “k” , so that 

● Pointer State switch (analogous to FSSH): 

Decay of Mixing
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Coherent Switches with Decay of Mixing (CSDM)

● Decoherence effect on the electronic dynamics:

● Decoherent force:

● Total force on atom N:
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● Photo induced isomerization of Azobenzene:
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Nonadiabatic Molecular Mechanics with Charge 
Transfer and Excitation Dynamics

Push-Pull AZO compounds and Dye Sensitizers

JPC Lett., 2018, 9, 5926.



  

Nonadiabatic Molecular Mechanics with Charge Transfer and 
Excitation Dynamics

Vauthey et al.,PCCP, 2018,7254



  

Nonadiabatic Molecular Mechanics with Charge 
Transfer and Excitation Dynamics



  

Nonadiabatic Molecular Mechanics with Charge 
Transfer and Excitation Dynamics

Push-Pull AZO compounds and Dye Sensitizers

J. Phys. Chem. C, 2019



  

Nonadiabatic Molecular Mechanics with Charge Transfer and 
Excitation Dynamics



  

Nonadiabatic Molecular Mechanics with Charge Transfer and 
Excitation Dynamics

J. Phys. Chem. C, 2019



  



  

Nonadiabatic Molecular Mechanics with Charge Transfer and 
Excitation Dynamics



  

Nonadiabatic Molecular Mechanics with Charge Transfer and 
Excitation Dynamics



  

Nonadiabatic Molecular Mechanics with Charge Transfer and 
Excitation Dynamics

CT-3 CT-3



  

Nonadiabatic Molecular Mechanics with Charge Transfer and 
Excitation Dynamics
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Summary: Coherent Switches with Decay of Mixing (CSDM)

Advantages of the CSDM method:

● CSDM combines Mean-Field Ehrenfest and Fewest Switches Surface Hopping;

● No discontinuities in nuclear momentum (due to non-adiabatic hops);

● Total energy is naturally conserved;

● Includes electronic decoherence effects in Mean-Field Ehrenfest;

● Decoherence is weaker at strong coupling regions, allowing for vibronic effects.
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Nonadiabatic Molecular Mechanics with Charge 
Transfer and Excitation Dynamics



  

Extended Hückel theory to account for the chemical bonding: 

Atomic Orbitals: Slater-type orbitals (STO)

Sensitive to molecular geometry, short range couplings: cutoff = 12 Å.

 Extended Hückel Tight-binding



  

 Azobenzene in Methanol solution

CNNC dihedral angle

QM-MM simulation
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DynEMol Method

Dynamics of Electrons in Molecules
A Semi-empirical MO method for Large Scale Electronic Quantum 

Dynamics

DynEMol: tools for studying Dynamics of Electrons in Molecules. 
https://github.com/lgcrego/Dynemol



  

 Benzene – Intramolecular Vibrational Relaxation (IVR)

J. Phys. Chem. C 2016, 120, 27688



  

 Benzene: Energy balance  in Vibrational Relaxation
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 Benzene – Intramolecular Vibrational Relaxation (IVR)

Check: comparisson with high-level theory
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(performed with Gaussian-09)

J. Phys. Chem. C 2016, 120, 27688



  

 Azobenzene – Photoinduced Isomerization

CNNC dihedral angle

J. Phys. Chem. C 2016, 120, 27688



  

EHT-MM-Ehrenfest

CASSCF(14,12)/6-31G*

 Azobenzene – Photoinduced Isomerization

Check: comparisson with high-level theory



  

Concerted Photoisomerization of Stilbene

J. Phys. Chem. C 2016, 120, 27688

the trans→cis torsion 

H-C=C-H dihedral drives the C-C=C-C isomerization 

Time-dependent Vibrational 
Spectra
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