

Incorporating Nuclear Quantum Effects in *ab initio* Molecular Dynamics for Accurate and Efficient Vibrational Spectra Calculations

Yang Yang Virtual International Seminar on Theoretical Advancements (VISTA)

10/19/2022

Challenging IR spectrum of H₉O₄⁺

Y. Qi, and J. Bowman, J. Phys. Chem. A. 123, 1399 (2019)

Nuclear Quantum Effects (NQEs)

Outline

- Background: Nuclear quantum effects (NQEs)
- Method development 1: Constrained multicomponent DFT
- Method development 2: Molecular dynamics with NQEs
- Combination: CNEO-MD and results in molecules
- Summary

Outline

- Background: Nuclear quantum effects (NQEs)
- Method development 1: Constrained multicomponent DFT
- Method development 2: Molecular dynamics with NQEs
- Combination: CNEO-MD and results in molecules
- Summary

Electron cloud and nuclear cloud

What are nuclear quantum effects?

Quantum Delocalization

Nuclear quantum effects in physics, chemistry, and biology

Geometric isotope effect

 $\begin{array}{c} & (I, C) \\ & (I, C) \\ & (I, D) \end{array} \end{array} \xrightarrow{-CI} \left[\begin{array}{c} & (I, C) \\ & (I, D) \end{array} \right] \xrightarrow{+H_2O} \\ & (I, D) \end{array} \xrightarrow{+H_2O}$

k_H / k_D = 1.30, 25 °C Kinetic isotope effect

Proton coupled electron transfer

Image from RSC Publishing

H(D)

H(D)

OH

Commonly used methods for molecular simulations

→

Classical Mechanics Very good and cheap

Path-integral formulation Pretty good and less expensive

$$\bigvee \psi(x,t+\Delta t) = U(\Delta t)\psi(x,t)$$

Quantum dynamics Accurate but expensive

Outline

- Background: Nuclear quantum effects (NQEs)
- Method development 1: Constrained multicomponent DFT
- Method development 2: Molecular dynamics with NQEs
- Combination: CNEO-MD and results in molecules
- Summary

Classical MD picture: point charge nuclei

Classical MD picture: point charge nuclei

Classical MD picture: Adiabatic approximation

- Classical nuclei
- Quantum electrons
 - Common assumption: relax adiabatically (Usually ground state $\Psi(\mathbf{r}_e; \mathbf{R}_n)$)

Real picture: nuclei NOT point charges

Incorrect picture: Point charge

Correct picture: Nuclear cloud

Real dynamics picture

Real dynamics picture

A new way of performing MD

- Quantum nuclei and quantum electrons
- Key assumption 1: Quantum nuclear expectation positions denote geometries
- Key assumption 2: Both nuclei and electrons relax adiabatically $\Psi(\mathbf{r}_e, \mathbf{R}_n; \langle \mathbf{R}_n \rangle)$

Need a quantum chemistry method that...

• Treats both electrons and nuclei quantum mechanically

Multicomponent density functional theory: $E = E[\rho^e, \{\rho^n\}]$

- Gives energy surface as a function of nuclear expectation positions Satisfies: $\langle \phi^n | \mathbf{r} | \phi^n \rangle = \mathbf{R}^n$
- Minimizes energy (Adiabatic approximation) at a particular geometry Find solution: $\min E$

Existence of multicomponent density functional theory

Hohenberg-Kohn theorem for multicomponent system

$$E = E[\rho^e, \{\rho^n\}]$$

Kohn-Sham Formalism

$$(-\frac{1}{2}\nabla^2 + v^e)\phi^e = \epsilon^e \phi^e$$
$$(-\frac{1}{2m^n}\nabla^2 + v^n)\phi^n = \epsilon^n \phi^n$$

• Many names: NOMO, MCMO, NEO, APMO...

Constrained multicomponent density functional theory (CNEO-DFT)

Modified Lagrange multiplier in Lagrangian

$$L = E[\rho^{e}, \rho^{n}] - \sum_{i} \epsilon_{i} \left(\langle \phi_{i} | \phi_{i} \rangle - 1 \right) + \sum_{n} \mathbf{f}^{n} \cdot \left(\langle \phi^{n} | \mathbf{r} | \phi^{n} \rangle - \mathbf{R}^{n} \right)$$

Electronic equation

$$\left(-\frac{1}{2}\nabla^2 + v^e\right)\phi^e = \epsilon^e \phi^e$$

An extra term for nuclear equation

$$\left(-\frac{1}{2m^{n}}\nabla^{2}+v^{n}+\mathbf{f}^{n}\cdot\mathbf{r}\right)\phi^{n}=\epsilon^{n}\phi^{n}$$

SCF solve for ϕ^e and ϕ^n at each geometry, evaluate energy $E(\mathbf{R}^n)$

X. Xu and Y. Yang, *J. Chem. Phys.* **152**, 084107 (2020) X. Xu, and Y. Yang, *J. Chem. Phys.* **153**, 074106 (2020)

Energy surface: ZPE and geometric isotope effects

• ZPE included in calculations

 Smaller ZPE for heavier isotopes

 Shorter bond length for heavier isotopes

X. Xu and Y. Yang, *J. Chem. Phys.* **152**, 084107 (2020) X. Xu, and Y. Yang, *J. Chem. Phys.* **153**, 074106 (2020)

Perform MD using Newton's Equations?

Theoretical Justification?

Outline

- Background: Nuclear quantum effects (NQEs)
- Method development 1: Constrained multicomponent DFT
- Method development 2: Molecular dynamics with NQEs
- Combination: CNEO-MD and results in molecules
- Summary

Ehrenfest Theorem: Connect quantum and classical

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle x \rangle = \frac{\langle p \rangle}{m}$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \langle p \rangle = -\langle \frac{\mathrm{d}}{\mathrm{d}x} V(x) \rangle$$

- Highly similar to classical equations
- Under special conditions
- Classical equations for expectation position and momentum
- Justify classical MD, but no nuclear quantum effects

Alternative formulation: Constrained minimization

• 1 phase point $\leftrightarrow \infty$ wave functions

 Adiabatic assumption: At a phase point, always relax to lowest-energy wave function

• Like constrained search

Brief derivation

Conventional MD: Only observable kinetic energy (no ZPE)

Brief derivation

$$\psi(x,t) = A(x,t) \exp(iS(x,t)/\hbar)$$
$$\langle \hat{T} \rangle(t) = \langle A(t) | \hat{T} | A(t) \rangle + \frac{\langle \hat{p} \rangle^2(t)}{2m} + \frac{\sigma_p^2(t)}{2m}$$
$$\frac{\langle \hat{p} \rangle}{m} \cdot \frac{\hat{d} \langle \hat{p} \rangle}{dt} = \left\langle \frac{\partial V}{\partial t} \right\rangle - \frac{d}{dt} \langle A(t) | \hat{H}(t) | A(t) \rangle - \frac{d}{dt} \frac{\sigma_p^2}{2m}$$

 $\approx \cdots$

$$= -\frac{\langle \hat{p} \rangle}{m} \cdot \frac{d}{d\langle x \rangle} \langle A | \hat{H}(t) | A \rangle \qquad \begin{array}{l} \text{Constrained Minimized} \\ \text{Energy Surface (CMES)} \\ \frac{d\langle \hat{p} \rangle}{dt} \approx -\frac{d}{d\langle x \rangle} \langle A | \hat{H}(t) | A \rangle \equiv -\frac{d}{d\langle x \rangle} V^{\text{CMES}}(\langle \hat{x} \rangle) \end{array}$$

Alternative classical equations for quantum system

$$\frac{d}{dt} \langle x \rangle = \frac{\langle p \rangle}{m}$$
$$\frac{d}{dt} \langle p \rangle \approx -\frac{d}{d\langle x \rangle} V^{\text{CMES}}(\hat{x})$$

 $\langle A(t) | \hat{T} | A(t) \rangle$ included

Quantum delocalization kinetic energy Zero-point energy (ZPE)

Model tests: PES vs CMES

Harmonic Oscillator:

Same as classical MD, exact

Morse Oscillator: More accurate than existing MD methods

Double-well potential: Get tunneling

Outline

- Background: Nuclear quantum effects (NQEs)
- Method development 1: Constrained multicomponent DFT
- Method development 2: Molecular dynamics with NQEs
- Combination: CNEO-MD and results in molecules
- Summary

cNEO-MD working equation

$$\frac{d}{dt} \langle x \rangle = \frac{\langle p \rangle}{m}$$
$$\frac{d}{dt} \langle p \rangle \approx -\frac{d}{d\langle x \rangle} V^{\text{cNEO-DFT}}(\langle x \rangle)$$

- Highly similar to AIMD: DFT \rightarrow CNEO-DFT
- Same computational scaling
- Practical tests: 1.5-3 times more expensive

Results: H₂O, HDO, and D₂O IR spectra

Significantly outperforms
conventional AIMD

X. Xu, Z. Chen, and Y. Yang, J. Am. Chem. Soc. 14, 4039 (2022)

CH₃OH IR spectra by cNEO-MD

- Significantly outperforms AIMD for OH and CH stretches
- Error: reduced to 1/10

Reason: Nuclear quantum effects

X. Xu, Z. Chen, and Y. Yang, J. Am. Chem. Soc. 14, 4039 (2022)

Results: 1-butanol IR spectra

 Excellent agreement with experiments for C-H and O-H stretches

X. Xu, Z. Chen, and Y. Yang, J. Am. Chem. Soc. 14, 4039 (2022)

Challenging IR spectrum of H₉O₄⁺

Y. Qi, and J. Bowman, J. Phys. Chem. A. 123, 1399 (2019)

IR spectrum of H₉O₄⁺

X. Xu, and Y. Yang, preliminary data

Outline

- Background: Nuclear quantum effects (NQEs)
- Method development 1: Constrained multicomponent DFT
- Method development 2: Molecular dynamics with NQEs
- Combination: CNEO-MD and results in molecules
- Summary

NEO Dynamics (Hammes-Schiffer & Li)

CNEO-MD (Yang)

	NEO Dynamics (Hammes-Schiffer & Li)	CNEO-MD (Yang)
Goal	Nonadiabaticity (e and p)	Include ZPE in MD

	NEO Dynamics (Hammes-Schiffer & Li)	CNEO-MD (Yang)
Goal	Nonadiabaticity (e and p)	Include ZPE in MD
Approach	Quantum dynamics	Classical dynamics

	NEO Dynamics (Hammes-Schiffer & Li)	CNEO-MD (Yang)
Goal	Nonadiabaticity (e and p)	Include ZPE in MD
Approach	Quantum dynamics	Classical dynamics
Cost	Higher	Lower

	NEO Dynamics (Hammes-Schiffer & Li)	CNEO-MD (Yang)
Goal	Nonadiabaticity (e and p)	Include ZPE in MD
Approach	Quantum dynamics	Classical dynamics
Cost	Higher	Lower
Future	Nonadiabatic PCET	Replace past AIMD

Outline

- Background: Nuclear quantum effects (NQEs)
- Method development 1: Constrained multicomponent DFT
- Method development 2: Molecular dynamics with NQEs
- Combination: CNEO-MD and results in molecules
- Summary

Summary

- CNEO-DFT
 - Constraints on nuclear expectation positions
 - Energy as a function of nuclear expectation positions
 - Energy surface with NQEs
- CMES-MD
 - Alternative approximation to Ehrenfest theorem
 - Incorporating nuclear quantum effects in classical MD
 - Good performance on model systems
- CNEO-MD
 - Highly similar to AIMD, but DFT \rightarrow CNEO-DFT
 - Same formal scaling as conventional AIMD
 - Excellent results, greatly outperforms conventional AIMD
 - Future applications: Water, bulk, reaction rates, excited states, non-adiabaticity...

Acknowledgement

- Xi Xu, Zehua Chen, and Yang Yang, JACS. 2022, 144, 4039
- Zehua Chen, and Yang Yang, arXiv:2111.12832
- Xi Xu, and Yang Yang, *JCP*. **2021**, 154, 244110
- Xi Xu, and Yang Yang, *JCP*. **2020**, 153, 074106
- o Xi Xu, and Yang Yang, JCP. **2020**, 152, 084107