Charge Transfer Landscape Manifesting Structure-Rate Relationship in the Condensed Phase via Machine Learning

Dominikus Brian

Division of Arts and Sciences, NYU Shanghai NYU-ECNU Center for Computational Chemistry at NYU Shanghai Department of Chemistry, New York University

VISTA Seminar 43, October 19, 2022

CT Landscape

Dominikus Brian

Introduction	

CTL Construction and Exploration

Summary and Outlook

Outline

2 Charge Transfer Landscape (CTL)

Introduction
00000

CTL Construction and Exploration

Summary and Outlook

Outline

2 Charge Transfer Landscape (CTL)

- 3 CTL Construction and Exploration
- 4 Summary and Outlook

CTL Construction and Exploration

Summary and Outlook

Global Energy Transition and Sustainable Development

Global Energy Transition & Sustainable Development

CTL Construction and Exploration

Summary and Outlook

Global Energy Transition and Sustainable Development

Global Energy Transition & Sustainable Development

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

Solution-Processed OPV Device for Large-Scale Energy Harvesting

Organic Photovoltaics (OPV) : From lab to the city

Figure 1: Solution Processed Bulk-Heterojunction OPV. Image: Adv. Mater. 2022, 34, 2202575.

Figure 2: Solar Cells for Energy Harvesting Window. Image: Adv. Energy Mater. 2019, 9, 1900720.

IntroductionCharge Transfer Landscape (CTL)0000000000

CTL Construction and Exploration

Summary and Outlook

Objectives: Charge Transfer (CT) Landscape Construction and Exploration.

$\mathsf{CT} \ \mathsf{Landscape} \approx \mathsf{Conformations} \Leftrightarrow \mathsf{CT} \ \mathsf{Properties}$

Dominikus Brian and Xiang Sun, JPCB, 125, 13267-13278, (2021).

- Construct : Construct Conformations-CT properties ML models to bypass exhaustive and expensive calculations. Exploit the ML models to interpolate for a larger conformations-CT properties database. [5 Steps]
- Explore : Perform exploration and analysis to obtain molecular insights. [3 Examples]

Subject of the Study

Molecular triad (Fullerene - Porphyrin - Carotenoid) in Polar Organic Solvent (THF). Chosen for the following reason:

- Preliminary knowledge of the influence of conformation on the calculated CT properties.
- Accessible literature for the multiscale simulation (quantum chemistry and molecular dynamics) aspect of the system.
- Availability of experimental kinetics data in condensed phase.

Introduction	

CTL Construction and Exploration

Summary and Outlook

Outline

2 Charge Transfer Landscape (CTL)

- 3 CTL Construction and Exploration
- 4 Summary and Outlook

Charge Transfer Landscape (CTL) 0000 CTL Construction and Exploration

Summary and Outlook

Charge Transfer Landscape

Formal Definition

Charge Transfer (CT) Landscape : Describe the full conformation space of a molecule or interacting molecular systems that manifest mapping of the possible states to their charge transfer properties, such as electron transfer kinetic rate, activation energies, diabatic coupling, reorganization energies, and other relevant intermediate molecular properties, a collection of which can be called charge transfer fingerprints (CTFP).

Informal Definition

Charge Transfer (CT) Landscape : A kind of energy landscape for charge transfer properties.

CTL Construction and Exploration

Summary and Outlook

CT Landscape Strategy

Figure 3: Schematic illustration of the machine learning model construction for charge transfer (CT) landscape of organic photovoltaic molecule in condensed phase.

CT Landscape

CTL Construction and Exploration

Summary and Outlook

CT Landscape Strategy

The conundrum for finding optimal combinations of methodology and protocols.

- MD Simulations : Force Field, Enhanced Sampling, Simulations Parameters and Steps.
- Landmark Structures : Number of samples, Importance Sampling, Selection Criteria.
- CT Rate Calculation : Quantum Chemistry, Rate Theory, Intermediate Properties.
- Feature Engineer : Feature/spatial Representation and Dimension Reduction.
- Machine Learning : ML algorithm, Training Strategy/Protocol, Hyperparameters Optimization.

Introduction	

CTL Construction and Exploration •••••••••••••

Summary and Outlook

Outline

2 Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

CT Landscape Construction

5 Steps of Charge Transfer Landscape Construction

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

1. MD Simulations for Conformational Sampling

Figure 4: Free energy landscape obtained with data sets of increasing size.

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

2. Extracting Landmark Structures

- (a) Molecular descriptors ;
- (b) Correlation between descriptors

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

2. Extracting Landmark Structures

- (c) Stochastic sampling around equipartition grid points;
- (d) Selected landmark structures.

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

3. CT Rate Constant Calculation

CTRAMER (Charge-Transfer RAtes from Molecular dynamics, Electronic structure, and Rate theory). For more detail see: JPCB, 125, 13267-13278, (2021) and the CTRAMER paper JCP, 154, 214108 (2021).

troduction Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

3. CT Rate Constant Calculation

The CT rate constant was calculated based on linearized semiclassical Fermi's golden rule (LSC FGR), with Marcus level of approximation

$$k_{D\to A} = \frac{\Gamma^2}{\hbar} \sqrt{\frac{2\pi}{\sigma_U^2}} \exp\left(-\frac{\langle U \rangle^2}{2\sigma_U^2}\right), \qquad (1)$$

where Γ is the electronic coupling, $\langle U \rangle$ and σ_U^2 are the ensemble average and corresponding variance of the donor-acceptor energy gap, respectively. These properties are obtained from quantum chemistry calculation and molecular dynamics simulation. Alternatively, expressing in term of the Marcus parameters

$$k_{D\to A}^{\rm M} = \frac{\Gamma^2}{\hbar} \sqrt{\frac{\pi}{k_B T E_r}} \exp\left(-\frac{(\Delta E + E_r)^2}{4k_B T E_r}\right),\tag{2}$$

where the reorganization energy $E_r = \sigma_U^2/(2k_BT) = -\Delta E - \langle U \rangle$, and ΔE is the donor-to-acceptor reaction free energy.

ntroduction Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

3. CT Rate Constant Calculation

	÷ @	£ @	1981	h^+	🍓 e ⁻		
$\pi\pi^*$	A. A.		Strand and the	**		4	terrant of
CT1	Street and	*	the second se	• @ *~~		4\$	free free free free free free free free
CT2	5		Magazzen -> E	**		1000000000r.	the state of the s
	(a))		(b)		(c)
Excitatio	on	(a)	Conf #0	(b) C	onf #32	(c) C	onf #364
Excitation $E_{\pi\pi^*}$	on	(a)	Conf #0 2.58	(b) C	onf #32	(c) C	2.67
$\frac{Excitation}{E_{\pi\pi^*}}$	on	(a)	Conf #0 2.58 1.87	(b) C	conf #32 1.74 2.04	(c) C	conf #364 2.67 1.49
$\frac{E_{\pi\pi^*}}{E_{\text{CT1}}}$	on	(a)	Conf #0 2.58 1.87 2.01	(b) C	conf #32 1.74 2.04 2.65	(c) C	conf #364 2.67 1.49 2.53
Excitation $ $	on 0n π1	(a) $\tau^* \rightarrow CT$	$Conf #0$ 2.58 1.87 2.01 $\pi\pi^* \rightarrow CT2$	(b) C 2 $\pi\pi^* \rightarrow CT1$	2000000000000000000000000000000000000	(c) C $\pi\pi^* \rightarrow \text{CT1}$	conf #364 2.67 1.49 2.53 $\pi\pi^* \to CT2$
$ \frac{Excitation E_{\pi\pi^*}}{E_{CT1}} \\ \frac{E_{CT2}}{E_{CT2}} \\ \frac{Transition E_{CT2}}{k(s^{-1})} $	on π1 on π1	(a) $\tau^* \rightarrow CT$ $.12 \times 10^9$	$ \begin{array}{c} \text{Conf #0} \\ 2.58 \\ 1.87 \\ 2.01 \\ \hline \pi\pi^* \to \text{CT2} \\ 4.41 \times 10^6 \end{array} $	(b) C $\pi \pi^* \rightarrow CT1$ 5.56×10^{13}	conf #32 1.74 2.04 2.65 $\pi\pi^* \to CT2$ 8.16×10^5	(c) C $\pi\pi^* \rightarrow CT1$ 1.21×10^{14}	
$ \frac{Excitation E_{\pi\pi^*}}{E_{CT1}} \\ \frac{E_{CT2}}{E_{CT2}} \\ \frac{Transition E_{CT2}}{\Gamma (eV)} \\ \Gamma (eV) $	on $\pi \pi$	(a) $\tau^* \rightarrow CT$.12 × 10 ⁹ .68 × 10 ⁻¹	Conf #0 2.58 1.87 2.01 $\pi \pi^* \to CT2$ 4.41 × 10 ⁶ '3 2.01 × 10 ⁻⁵	(b) C $\pi\pi^* \rightarrow CT1$ 5.56×10^{13} 5.47×10^{-2}	conf #32 1.74 2.04 2.65 $ππ^* → CT2$ 8.16 × 10 ⁵ −7.20 × 10 ⁻⁵	(c) C $\pi\pi^* \rightarrow \text{CT1}$ 1.21×10^{14} 6.58×10^{-2}	$\begin{array}{c} \hline \text{conf #364} \\ \hline 2.67 \\ \hline 1.49 \\ \hline 2.53 \\ \hline \pi\pi^* \to \text{CT2} \\ \hline 8.03 \times 10^8 \\ -4.64 \times 10^{-4} \end{array}$
	$\begin{array}{c c} \mathbf{Dn} & \\ \hline \mathbf{Dn} & \pi\pi \\ & 8 \\ & -2 \\ T \\ \end{array}$	(a) $\tau^* \to CT$ $.12 \times 10^9$ $.68 \times 10^-$ 0.559	Conf #0 2.58 1.87 2.01 $\pi \pi^* \to CT2$ 4.41 × 10 ⁶ ³ 2.01 × 10 ⁻⁵ 0.2064	(b) C $\pi\pi^* \to CT1$ 5.56×10^{13} 5.47×10^{-2} -0.124	fonf #32 .74 2.04 2.65 $\pi\pi^* \rightarrow CT2$ 8.16 × 10 ⁵ -7.20 × 10 ⁻⁵ -0.835	(c) C $\pi\pi^* \rightarrow CT1$ 1.21 × 10 ¹⁴ 6.58 × 10 ⁻² 0.000150	
	$\begin{array}{c c} \mathbf{pn} & \\ \hline \mathbf{pn} & \pi\pi \\ \mathbf{pn} & \mathbf{R} \\ \mathbf{pn} & \mathbf{pn} \\ \mathbf{pn} & \mathbf{pn} \\ \mathbf{pn} & \mathbf{pn} \\ \mathbf{pn} & \mathbf{pn} \\ \mathbf{pn} & \mathbf{pn}$	(a) $\tau^* \to CT$ $.12 \times 10^9$ $.68 \times 10^-$ 0.559 0.0594	$\pi \pi^{*} \rightarrow CT2$ $\pi \pi^{*} \rightarrow CT2$ 4.41×10^{6} 3 2.01×10^{-5} 0.2064 0.0726	(b) C $\pi\pi^* \to CT1$ 5.56×10^{13} 5.47×10^{-2} -0.124 0.0177	$ \begin{array}{c} \text{onf #32} \\ 1.74 \\ 2.04 \\ 2.65 \\ \hline \pi\pi^* \to \text{CT2} \\ 8.16 \times 10^5 \\ -7.20 \times 10^{-5} \\ -0.835 \\ 0.0785 \end{array} $	(c) C $\pi\pi^* \to CT1$ 1.21×10^{14} 6.58×10^{-2} 0.000150 0.0186	
	$\begin{array}{c c} \mathbf{pn} & \\ \hline \mathbf{pn} & \pi\pi \\ \mathbf{pn} & \mathbf{R} \\ \mathbf{pn} & \mathbf{pn} \\ \mathbf{pn} & \mathbf{pn} \\ \mathbf{pn} & \mathbf{pn} \\ \mathbf{pn} & \mathbf{pn} \\ \mathbf{pn} & \mathbf{pn}$	(a) $\tau^* \to CT$.12 × 10 ⁹ .68 × 10 ⁻¹ 0.559 0.0594 1.15	Conf #0 2.58 1.87 2.01 $1 \pi \pi^* \rightarrow CT2$ 4.41 × 10 ⁶ 3 2.01 × 10 ⁻⁵ 0.2064 0.0726 1.40	(b) C $\pi\pi^* \rightarrow \text{CT1}$ 5.56×10^{13} 5.47×10^{-2} -0.124 0.0177 0.341	$ \begin{array}{c} \text{onf #32} \\ 1.74 \\ 2.04 \\ 2.65 \\ \hline \pi \pi^* \to \text{CT2} \\ 8.16 \times 10^5 \\ -7.20 \times 10^{-5} \\ -0.835 \\ 0.0785 \\ 1.52 \end{array} $	(c) C $\pi\pi^* \rightarrow CT1$ 1.21 × 10 ¹⁴ 6.58 × 10 ⁻² 0.000150 0.0186 0.360	

Figure 5: Charge transfer properties for prototypical triad conformations.

Introduction

CTL Construction and Exploration

Summary and Outlook

3. CTRAMER for CTFP Database

Figure 6: Data distribution in the CTFP database

New York University Shanghai | Sun Group

Charge	Landscape	(CTL)

CTL Construction and Exploration

Summary and Outlook

4. Feature Engineering

Descriptors for molecular structure JPCL, 11, 8710, (2020)

Coulomb Matrix

The diagonal CM elements are defined as $C_{ii} = 0.5Z_i^{(2.4)}$ and the off-diagonal elements are $C_{ij} = Z_i Z_j / |\mathbf{r}_i - \mathbf{r}_j|$ $(i \neq j)$, where Z_i and \mathbf{r}_i are the nuclear charge and position of the *i*-th atom.

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

5. Machine Learning for CT Landscape

Screening of Features, ML Model, and Learning Strategy

Features : {SOAP, CM, ACSF, PCA, Descriptors, ... }

ML Model : {ANN, KRR(lin, poly, rbf, chi2, Laplacian, Gaussian, custom), RF, Lasso Reg, XGBoost, ... }

Learning Strategy : {LOOCV, 5-Fold CV, Custom Split, ... }

= Coulomb Matrix (CM) + Kernel Ridge Regression (KRR) + 5-fold Cross-Validation Training Duration : \sim 1 CPU core hour / parameter set. \sim 150 parameter set were screened.

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

5. Machine Learning for CT Landscape Interpolation

Insights learned:

- KRR works well for direct QSPR mapping using small dataset.
- Calculated log(k/s⁻¹) (from ML predicted parameters) are prone to error propagation.
- ML model trained to directly predict log(k/s⁻¹) is superior to that trained on the linear scale k/s⁻¹.

*KRR : Kernel Ridge Regression; QSPR : Quantitative Structure-Property Relationship.

New York University Shanghai | Sun Group

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

5. Machine Learning for CT Landscape Interpolation

(a) Ab-Initio calculated (500 GPU hours + 97,000 CPU core hours)
(b) ML-Predicted (< 1 s w/ single core CPU)
(c) ML-Constructed (< 10 minutes w/ single core CPU)

New York University Shanghai | Sun Group

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

5 Steps of Charge Transfer Landscape Construction

CT Landscape

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

CT Landscape Exploration

3 Examples of Charge Transfer Landscape Exploration

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

1. Ensemble-averaged CT-Rate Constant

Floor : Free Energy Landscape from 1.2 Million Conformations ; Points : CT rate of 495 Landmark Structures.

CT Landscape

New York University Shanghai | Sun Group

Dominikus Brian

Introduction

CTL Construction and Exploration

Summary and Outlook

1. Ensemble-averaged CT Rate Constant

$$\langle k_{D \to A} \rangle = \sum_{i=1}^{n} W_i \ k_{D \to A,i}.$$
 (3)

with $W_i = e^{-\beta F_i} / \sum_{i=1}^n e^{-\beta F_i}$, *n* is the number of sampled structures and $\beta = 1/k_B T$ with T = 300K, and $F_i = -k_B T \ln[\text{Prob.}(D_i)]$, for the *i*-th landmark structure.

[495 Landmark Structures] [770 Random Structures] $\langle k_{\pi\pi^* \to \text{CT1}} \rangle = 0.82 \pm 0.23 \times 10^{11} \text{ s}^{-1} = 5.9 \pm 1.0 \times 10^{11} \text{ s}^{-1}$ Experimental data for similar triad molecules (T = 292K) in 2-MeTHF solvent, $\langle k_{\pi\pi^* \to \text{CT1}} \rangle = 1.1 \times 10^{11}$ and $3.31 \times 10^{11} \text{ s}^{-1}$. JACS, 119, 1400, (1997); JPCB, 104, 18, (2000); JPCA, 107, 38, (2003).

Boltzmann weighting is essential to correctly reflect the probabilities of each conformation in the ensemble.

CT Landscape

New York University Shanghai | Sun Group

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

2. Correlation Studies for Molecular Insights

- All the descriptors are less correlated with the CT properties of the transition $\pi\pi^* \rightarrow \text{CT1}$ than that of $\pi\pi^* \rightarrow \text{CT2}$.
- The descriptors D1–D4 and D8–D10 have strong (anti)correlation with CT properties. Relative distance and orientation of Carotenoid and Fullerene is important.
- The descriptors D5–D7 was found to be almost uncorrelated to CTFP. CTFP properties are less sensitive to the Fullere-Porphyrin orientation (D5), and the Carotenoid local structure (D6-D7).

Charge Transfer Landscape (CTL)

CTL Construction and Exploration

Summary and Outlook

3. Reverse Design using the CT landscape

Figure 7: Screenshot of the CT landscape explorer interactive web interface. The CT landscape explorer source code is accessible from https://github.com/xiangsunlab/ct_landscape.

Server access

Introduction	

CTL Construction and Exploration

Summary and Outlook

Outline

2 Charge Transfer Landscape (CTL)

3 CTL Construction and Exploration

Introduction	

CTL Construction and Exploration

Summary and Outlook

Summary

Summary

- ► We have developed ML models for Conformation-CTFP mapping with $R^2 > 0.97$ and MAE and RMSE of $\leq 1k_BT$.
- We constructed CT landscape for 1.2 million MD-sampled conformations employing ML models with the 5 steps strategy.
- We demonstrated 3 examples of CT landscape exploration to extract chemical insights.

Outlook

Construction and exploration of charge transfer landscape will be a useful tool to investigate the influence of conformation space on charge transfer properties and accelerate molecular/material design for various applications.

CTL Construction and Exploration

Summary and Outlook

Acknowledgement

Introc	
0000	00

CTL Construction and Exploration

Summary and Outlook

References

- JPCB, 125, 13267-13278, (2021)
- Ø JCP, 154, 214108, (2021).
- 3 Adv. Mater., 34, 2202575, (2022).
- Adv. Energy Mater., 9, 1900720, (2019).
- **JPCL**, 11, 8710, (2020).
- JACS, 119, 1400, (1997).
- **•** JPCB, 104, 18, (2000).
- IPCA, 107, 38, (2003).

Thank You !