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The usual interpretation of the quantum theory is self-con-
sistent, but it involves an assumption that cannot be tested
experimentally, #z., that the most complete possible specification
of an individual system is in terms of a wave function that deter-
mines only probable results of actual measurement processes.
The only way of investigating the truth of this assumption is by
trying to find some other interpretation of the quantum theory in
terms of at present “hidden” variables, which in principle deter-
mine the precise behavior of an individual system, but which are
in practice averaged over in measurements of the types that can
now be carried out. In this paper and in a subsequent paper, an
interpretation of the quantum theory in terms of just such
“hidden” variables is suggested. It is shown that as long as the
mathematical theory retains its present general form, this sug-
gested interpretation leads to precisely the same results for all

physical processes as does the usual interpretation. Nevertheless,
the suggested interpretation provides a broader conceptual frame-
work than the usual interpretation, because it makes possible a
precise and continuous description of all processes, even at the
quantum level. This broader conceptual framework allows more
general mathematical formulations of the theory than those
allowed by the usual interpretation. Now, the usual mathematical
formulation seems to lead to insoluble difficulties when it is ex-
trapolated into the domain of distances of the order of 107 ¢cm
or less. It is therefore entirely possible that the interpretation sug-
gested here may be needed for the resolution of these difficulties.
In any case, the mere possibility of such an interpretation proves
that it is not necessary for us to give up a precise, rational, and
objective description of individual systems at a quantum level of
accuracy.

1. INTRODUCTION

HE usual interpretation of the quantum theory is

based on an assumption having very far-reaching
implications, viz., that the physical state of an in-
dividual system is completely specified by a wave
function that determines only the probabilities of actual
results that can be obtained in a statistical ensemble of
similar experiments. This assumption has been the
object of severe criticisms, notably on the part of
Einstein, who has always believed that, even at the
quantum level, there must exist precisely definable
elements or dynamical variables determining (as in
classical physics) the actual behavior of each individual
system, and not merely its probable behavior. Since
these elements or variables are not now included in the
quantum theory and have not yet been detected experi-
mentally, Einstein has always regarded the present
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tions have as yet been suggested. The purpose of this
paper (and of a subsequent paper hereafter denoted by
IT) is, however, to suggest just such an alternative
interpretation. In contrast to the usual interpretation,
this alternative interpretation permits us to conceive
of each individual system as being in a precisely de-
finable state, whose changes with time are determined
by definite laws, analogous to (but not identical with)
the classical equations of motion. Quantum-mechanical
probabilities are regarded (like their counterparts in
classical statistical mechanics) as only a practical
necessity and not as a manifestation of an inherent
lack of complete determination in the properties of
matter at the quantum level. As long as the present
general form of Schroedinger’s equation is retained, the
physical results obtained with our suggested alternative
interpretation are precisely the same as those obtained
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The time-dependent wavefunction is constructed from adaptable Gaussians
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and width (@) parameters
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The time-dependent wavefunction is constructed from adaptable Gaussians
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Time-dependent Schrodinger Equation (TDSE) Journal of Physical Chemistry A, (2016), 3023-3031,
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...and can be calculated at an arbitrary time via matrices Kand T
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The QTAG algorithm evolves basis coefficients and trajectories

1. Computing Basis Coefficients
2. Updating Trajectory Parameters

Compute Overlap Matrix Elements

+ Calculate Momentum from Wavefunction

Compute Hamiltonian Matrix Elements +
+ Update Basis Parameters {p,a,s}

Solve Eigenvalue Problem HZ=SZ¢ +
+ Update Positions (q)

Update Basis Coefficients from Eigenvalues/ +
vectors

Compute Time Overlap Matrix Elements




The QTAG algorithm evolves basis coefficients and trajectories

1. Computing Basis Coefficients

Analytical integral if

available, approximated
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Compute Hamiltonian Matrix Elements (1b) | H i = < gi ‘ K V‘ gj>

v
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The QTAG algorithm evolves basis coefficients and trajectories

Unaltered Bohmian trajectories

are notoriously numerically n: = Im (V_@b)
challenging, can modify (0
momenta for added stabillity:
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2. Updating Trajectory Parameters

Calculate Momentum from Wavefunction

v

Update Basis Parameters {p,a,s}

v

Update Positions (q)

v

Compute Time Overlap Matrix Elements
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Quantum Dynamics with the Quantum Trajectory-Guided
Adaptable Gaussian Bases
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ABSTRACT: The computational cost of describing a general quantum system fully {g,®)}
coupled by anharmonic interactions scales exponentially with the system size. Thus, an

efficient basis representation of wave functions is essential, and when it comes to the '
large-amplitude motion of high-dimensional systems, the dynamic bases of Gaussian
functions are often employed. The time dependence of such bases is determined from
the variational principle or from classical dynamics; the former is challenging in
implementation due to singular matrices, while the latter may not cover the configuration
space relevant to quantum dynamics. Here we describe a method using Quantum Trajectory-guided Adaptable Gaussian
(QTAG) bases “tuned”—including the basis position, phase, and width—to the wave function evolution, thanks to the
continuity of the probability density in the course of the quantum trajectory dynamics. Thus, an efficient basis in configuration
space is generated, bypassing the variational equations on the parameters of the Gaussians. We also propose a time propagator
with basis transformation by projections which lends efficiency and stability to the QTAG dynamics, as demonstrated on
standard tests and the ammonia inversion model.
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ABSTRACT: An efficient basis representation of time-dependent wavefunctions is essential for theoretical studies of high-
dimensional molecular systems exhibiting large-amplitude motion. For fully coupled anharmonic systems, the complexity of a general
wavefunction scales exponentially with the system size; therefore, for practical reasons, it is desirable to adapt the basis to the time-
dependent wavefunction at hand. Often times on this quest for a minimal basis representation, time-dependent Gaussians are
employed, in part because of their localization in both configuration and momentum spaces and also because of their direct
connection to classical and semiclassical dynamics, guiding the evolution of the basis function parameters. In this work, the quantum-
trajectory guided adaptable Gaussian (QTAG) bases method [J. Chem. Theory Comput. 2020, 16, 18—34] is generalized to include
correlated, i.e., non-factorizable, basis functions, and the performance of the QTAG dynamics is assessed on benchmark system/bath
tunneling models of up to 20 dimensions. For the popular choice of initial conditions describing tunneling between the reactant/
product wells, the minimal “semiclassical” description of the bath modes using essentially a single multidimensional basis function
combined with the multi-Gaussian representation of the tunneling mode is shown to capture the dominant features of dynamics in a
highly efficient manner.




Libra

University
Libra Winter School on Excited States and Nonadiabati ics i at Buﬁalo
Materials 2029 Ohadiabatic Dynamics in

About the Winter School

The Libra Winter School aims 1 10 provide raineng 1o graduate shudenty w*‘m fessarthens, and educatons working In a broader feld of raradistanc ord
wedl as In computational material sciens

gynamics In abstract modeds and o

ieam 1o install and use the Lib

Prof. Alexey
AKimov

om [;Jrﬂ‘zzr jos n*a[

Libra Winter School on Excited States and
Nonadiabatic Dynamics in Materials 2022




Nonadiabatic dynamics requires minor matrix modifications

1. Computing Basis Coefficients

Single-surface Multi-surface
Compute Overlap Matrix Elements (1a) qaa _ < gq ‘ gcp> Sa,b — ()
+ (% 1 ] 7,] o
: : : aa a al . a b b| .b
Compute Hamiltonian Matrix Elements (1b) Hz‘j = (g7 | K + V% gj> H 37 = (g%|V 9j>

v

Solve Eigenvalue Problem HZ=SZ¢& (1c) |HZ = SZE

v

Update Basis Coefficients from Eigenvalues/
vectors
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Nonadiabatic dynamics requires minor matrix modifications

1. Computing Basis Coefficients

Compute Overlap Matrix Elements

v

Compute Hamiltonian Matrix Elements

v

Solve Eigenvalue Problem HZ=SZ¢

v

Update Basis Coefficients from Eigenvalues/
vectors

ntraj

Hamiltonian Matrix Overlap Matrix




Trajectories in the nonadiabatic picture still evolve on single surfaces*

Single-surface 2. Updating Trajectory Parameters
*Momenta poorly defined for
basis functions on surfaces w/ no Vb
density, may have to consider pe = Im (—) (2a) Calculate Momentum from Wavefunction
how to move them initially: Y +
* Synchronize to populated state % B 2V py :
implemented here) = - a; | (2b) Update Basis Parameters {p,a,s}

* Move them classically +
* Place them in coupling region dqy Dy

— = — 2C Update Positions

= (2¢) p + (q)

Tigm’m_l) = ( ggm) | g](.m_1)> (2d) Compute Time Overlap Matrix Elements
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Holstein Model — Coupled Harmonic Oscillators
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Holstein Model

Coupled Harmonic Oscillators
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Holstein Model

Coupled Harmonic Oscillators

Position (a.u.)
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Holstein Model

Coupled Harmonic Oscillators
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Single Avoided Crossing
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Avoided Crossing
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Avoided Crossing
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Dual Avoided Crossing
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Dual Avoided
Crossing
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Dual Avoided

Crossing
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Gaussian parameters are consistent with Bohmian trajectories




The time-dependent wavefunction is constructed from adaptable
Gaussians




The time-dependent wavefunction is constructed from adaptable
Gaussians

...and can be calculated at an arbitrary time via matrices Kand T




The QTAG algorithm evolves basis coefficients and trajectories




Nonadiabatic dynamics requires minor matrix modifications




Trajectories in the nonadiabatic picture still evolve on single
surfaces*




Proof-of-concept models look promising in low dimension
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