

Laboratory of Computational Photochemistry and Photobiology

Dipartimento di Biotecnologia, Chimica e Farmacia - Università di Siena Chemistry Department - Bowling Green State University

On the Origin of the High Quantum Efficiency of Visual Pigments

Massimo Olivucci

VISTA, 22 June 2022

Department of Biotechnology, Chemistry and Pharmacy Università di Siena

Emanuele Marsili

Laura Pedraza-González

Fondazione Banca d'Italia

Chemistry Department Bowling Green State University

Ohio Supercomputer Center

An OH TECH Consortium Member

Structure of Rhodopsins

• Ernst, O. P.; Lodowski, D. T.; Elstner, M.; Hegemann, P.; Brown, L. S.; Kandori, H. Chem. Rev. 2014, 114, 126-63.

• Gozem, S.; Luk, H. L.; Schapiro, I.; Olivucci, M. Chem. Rev. 2017, 117, 13502-13565.

Electronic structure of the retinal chromophore

• Gozem, S.; Luk, H. L.; Schapiro, I.; Olivucci, M. Chem. Rev. 2017, 117, 13502-13565.

Mechanism of an ultrafast photochemical reaction

Photoisomerization coordinate

The Landau-Zener model is valid for a single-mode coordinate:

$$P = \exp\left(-\frac{2\pi H_{12}^2}{\hbar|\nu F|}\right)$$

probability of forming the product

velocity along the coordinate

difference in slopes of S₁ and S₀ along the coordinate

• Gozem, S.; Luk, H. L.; Schapiro, I.; Olivucci, M. Chem. Rev. 2017, 117, 13502-13565.

QM/MM models generated Automatically

(fixed)

Cavity

(mobile)

- Chromophore CASPT2//CASSCF/6-31G*
- Electrostatic Embedding, Amber FF (except frontier)
- Only the chromophore, cavity and cavity waters are relaxed

Automatic rhodopsin modeling (ARM) model benchmark

data from 26 rhodopsins from 18 different organisms (one extinct)

vertebrates, invertebrates, eubacteria and archaea

(Bovine) Rod Rhodopsin studies using QM/MM models

Gozem, S.; Luk, H. L.; Schapiro, I.; Olivucci, M. Chem. Rev. 2017, 117, 13502-13565.

Photoisomerization coordinate

• Frutos, L. M.; Andruniów, T.; Santoro, F.; Ferré, N.; Olivucci, M. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 7764-7769.

• Polli, D.; Altoè, P.; Weingart, O.; Spillane, K. M.; Manzoni, C.; Brida, D.; Tomasello, G.; Garavelli, M. et al., Nature 2010, 467, 440.

• Johnson, P. J. M.; Halpin, A.; Morizumi, T.; Prokhorenko, V. I.; Ernst, O. P.; Miller, R. J. D. Nat. Chem. 2015, 7, 980-6.

Quantum yield calculation using quantum-classical (TSH-GPDC) trajectories

Outline

TRAJECTORY LEVEL:

The *reactivity* of each trajectory is controlled by :

the phase and magnitude of the π-overlap velocity at the decay point

POPULATION (STATISTICAL) LEVEL:

The *quantum efficiency* value is controlled by:

the splitting (i.d. vibrational decoherence) of the excited state population

Schnedermann, C.; Yang, X.; Liebel, M.; Spillane, K. M.; Lungtenburg, J.; Fernandez, I.; Valentini, A.; Schapiro, I.; Olivucci, M.; Kukura, P.; Mathies, R. A. *Nat. Chem.* **2018**, *10*, 449-455.

X. Yang; M. Manathunga; S. Gozem; J. Léonard; T. Andruniów; M. Olivucci. Nat. Chem. 2022, 14, 441-449.

Rhodopsin population dynamics 200 TSH trajectories

Rhodopsin population dynamics

200 TSH trajectories

Rhodopsin population dynamics 200 TSH trajectories

Relationship between HOOP phase and reactivity

• Klaffki, N.; Weingart, O.; Garavelli, M.; Spohr, E. Phys. Chem. Chem. Phys. 2012, 14, 14299-14305.

• Schapiro, I.; Ryazantsev, M. N.; Frutos, L. M.; Ferré, N.; Lindh, R.; Olivucci, M. J. Am. Chem. Soc. 2011, 133, 3354-3364.

Relationship between overlap velocity and reactivity

 $\approx \pi$ -overlap = (Twist-HOOP)/2

Relationship between overlap velocity and reactivity

- Weingart, O. Chem. Phys. 2008, 349, 348-355.
- Klaffki, N.; Weingart, O.; Garavelli, M.; Spohr, E. Phys. Chem. Chem. Phys. 2012, 14, 14299-14305.
- Schapiro, I.; Ryazantsev, M. N.; Frutos, L. M.; Ferré, N.; Lindh, R.; and Olivucci, M. J Am Chem Soc 2011, 133, 3354–3364.

Relationship between overlap velocity and quantum efficiency

Gonzalez Blanco, A., Olivucci, M. et al. in preparation

Population dynamics and quantum efficiency

 Schnedermann, C.; Yang, X.; Liebel, M.; Spillane, K. M.; Lungtenburg, J.; Fernandez, I.; Valentini, A.; Schapiro, I.; Olivucci, M.; Kukura, P.; Mathies, R. A. Nat. Chem. 2018, 10, 449-455.

The phase relationship between HOOP and twisting determines the reactivity

Coworkers: R. A. Mathies, P. Kukura, J.Lugtenburg

CT-MQC Quantum-Classical Trajectories for a Model Chromophore:

Coworkers: E. Marsili, F. Agostini, D. Lauvergnat

• E. Marsili; M. H. Farag; Y. Xuchun; L. De Vico; M. Olivucci. J. Phys. Chem. A 2019, 123, 1710-1719.

E. Marsili; M. Olivucci; D. Lauvergnat; F. Agostini. J. Phys. Chem. A 2020, 16, 6032-6048.

Rhodopsin population dynamics 200 TSH trajectories

• X. Yang; M. Manathunga; S. Gozem; J. Léonard; T. Andruniów; M. Olivucci. Nat. Chem. 2022, 14, 441-449.

Fast and slow population dynamics 200 TSH trajectories

Fast and slow subpopulation dynamics

50 fast + 50 slow TSH trajectories

Resonance Raman spectra simulations

[•] X. Yang; M. Manathunga; S. Gozem; J. Léonard; T. Andruniów; M. Olivucci. Nat. Chem. 2022, 14, 441-449.

20 fs Gaussian Wavepacket Dynamics for a Model Chromophore

• M. Olivucci; T. Tran; G. A. Worth; M. A. Robb. J. Phys. Chem. Lett. 2021, 12, 5639-5643.

May biological evolution have tuned the population splitting ?

• Yang, X.; Manathunga, M.; Gozem, S.; Léonard, J.; Andruniów, T.; Olivucci, M. Nat. Chem. in press.

May biological evolution have tuned the population splitting ?

Yang, X.; Manathunga, M.; Gozem, S.; Léonard, J.; Andruniów, T.; Olivucci, M. Nat. Chem. in press.

Jumping Spider rhodopsin population dynamics

(with X. Yang)

Absorption Max ca. 497 nm (Obs. 498) Excited State Lifetime ca. 100 fs (Obs. 70 to100) Isomerization Quantum Yields ca. 72% (Obs. 67%) Absorption Max ca. 542 nm (Obs. 535) Excited State Lifetime 83 fs Isomerization Quantum Yields 78%

Conclusion & Perspectives

The quantum efficiency ($\phi_{cis \rightarrow trans}$) of rod rhodopsins is controlled by **two conical intersections**:

Yang, X.; Manathunga, M.; Gozem, S.; Léonard, J.; Andruniów, T.; Olivucci, M. Nat. Chem. in press.