VISTA seminar, April, 2022

Nonadiabatic Dynamics, Machine Learning and Time-Resolved Pump-Probe Spectra

Zhenggang Lan 2022.04

South China Normal University

Introduction

Nonadiabatic dynamics

Research highlights

Transient-Absorption Pump-Probe Signals

Pump-probe spectroscopy

Hamiltonian

 $\hat{H}(t) = \hat{H}_{M} + \hat{H}_{F}(t)$ $\hat{H}_{F}(t) = -\hat{\boldsymbol{\mu}} \cdot \boldsymbol{E}(t)$

Third-order polarization

 $\boldsymbol{P}^{(3)}(t) = (i)^{3} \int_{0}^{\infty} dt_{3} \int_{0}^{\infty} dt_{2} \int_{0}^{\infty} dt_{1} \boldsymbol{E}(t-t_{3}) \boldsymbol{E}(t-t_{3}-t_{2}) \boldsymbol{E}(t-t_{3}-t_{2}-t_{1}) S(t_{3},t_{2},t_{1})$ $S(t_{3},t_{2},t_{1}) = Tr\{\hat{\boldsymbol{\mu}}^{I}(t_{1}+t_{2}+t_{3})[\hat{\boldsymbol{\mu}}^{I}(t_{1}+t_{2}),[\hat{\boldsymbol{\mu}}^{I}(t_{1}),[\hat{\boldsymbol{\mu}}^{I}(0),\hat{\boldsymbol{\rho}}(-\infty)]]\}$ $\hat{\boldsymbol{\mu}}^{I}(t) = e^{i\hat{H}_{M}(t-t_{0})} \hat{\boldsymbol{\mu}} e^{-i\hat{H}_{M}(t-t_{0})}$

Pump-probe electronic field $E(t) = E_{pu}(t) + E_{pr}(t-\tau)$ $E_{pu}(t) = \varepsilon_{pu}E_{pu}(t)e^{ik_{pu}x}e^{-i\omega_{pu}t} + c.c.$ $E_{pr}(t-\tau) = \varepsilon_{pr}E_{pr}(t-\tau)e^{ik_{pr}x}e^{-i\omega_{pr}t} + c.c.$

Pump-probe signal $I_{int}(\tau, \omega_{pr}) = \omega_{pr} \operatorname{Im} \left\{ \int_{-\infty}^{\infty} dt E_{pr}(t) e^{i\omega_{pr}t} P_{k_{pr}}^{(3)}(\tau, t) \right\}$ $I_{dis}(\tau, \omega) = \omega_{pr} \operatorname{Im} \left\{ \varepsilon_{pr}(\omega) P_{k_{pr}}^{(3)}(\tau, \omega) \right\}$

(1) Gelin, M. F.; Huang, X.; Xie, W.; Chen, L.; Doslic, N. A.; Domcke, W. J Chem Theory Comput **2021**, *17*, 2394-2408.

(2) Mukamel, S. Principles of Nonlinear Optical Spectroscopy. 1995.

GSB, SE and EAS components in TA PP signals

(1) Gelin, M. F.; Huang, X.; Xie, W.; Chen, L.; Doslic, N. A.; Domcke, W. J Chem Theory Comput **2021**, *17*, 2394-2408.

(2) Mukamel, S. Principles of Nonlinear Optical Spectroscopy. 1995.

Doorway-Window Approximations of Signals

Doorway-window approximation

Hamiltonian

$$\hat{H}_{M} = \begin{pmatrix} \hat{H}_{0} & 0 & 0 \\ 0 & \hat{H}_{I} & 0 \\ 0 & 0 & \hat{H}_{II} \end{pmatrix} \qquad \mu = \mu^{\uparrow} + \mu^{\downarrow} = \begin{pmatrix} 0 & \mu_{0,I} & 0 \\ 0 & 0 & \mu_{I,II} \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ \mu_{I,0} & 0 & 0 \\ 0 & \mu_{II,I} & 0 \end{pmatrix}$$

Doorway operators

$$\hat{D}_{0}(\omega_{pu}) = \int_{-\infty}^{\infty} dt'_{2} \int_{0}^{\infty} dt_{1} E_{pu}(t'_{2}) E_{pu}(t'_{2} - t_{1}) e^{i\omega_{pu}t_{1}} e^{-i\hat{H}_{1}t_{1}} \mu_{I,0} \hat{\rho}_{0,0} e^{i\hat{H}_{0}t_{1}} \mu_{0,I} + \text{h.c.}$$
$$\hat{D}_{I}(\omega_{pu}) = \int_{-\infty}^{\infty} dt'_{2} \int_{0}^{\infty} dt_{1} E_{pu}(t'_{2}) E_{pu}(t'_{2} - t_{1}) e^{i\omega_{pu}t_{1}} \mu_{0,I} e^{-i\hat{H}_{1}t_{1}} \mu_{I,0} \hat{\rho}_{0,0} e^{i\hat{H}_{0}t_{1}} + \text{h.c.}$$

Window operators

$$\hat{W}_{0}(\omega_{pr}) = \int_{-\infty}^{\infty} dt' \int_{0}^{\infty} dt_{3} E_{pr}(t') E_{pr}(t'+t_{3}) e^{i\omega_{pr}t_{3}} e^{i\hat{H}_{0}t_{3}} \mu_{0,I} e^{-i\hat{H}_{1}t_{3}} \mu_{I,0} + \text{h.c.}$$
$$\hat{W}_{I}(\omega_{pr}) = \int_{-\infty}^{\infty} dt' \int_{0}^{\infty} dt_{3} E_{pr}(t') E_{pr}(t'+t_{3}) e^{i\omega_{pr}t_{3}} \mu_{I,0} e^{i\hat{H}_{0}t_{3}} \mu_{0,I} e^{-i\hat{H}_{1}t_{3}} + \text{h.c.}$$
$$\hat{W}_{II}(\omega_{pr}) = \int_{-\infty}^{\infty} dt' \int_{0}^{\infty} dt_{3} E_{pr}(t') E_{pr}(t'+t_{3}) e^{i\omega_{pr}t_{3}} \mu_{I,II} e^{-i\hat{H}_{II}t_{3}} \mu_{I,II} e^{i\hat{H}_{1}t_{3}} + \text{h.c.}$$

⁽¹⁾ Gelin, M. F.; Huang, X.; Xie, W.; Chen, L.; Doslic, N. A.; Domcke, W. J Chem Theory Comput **2021**, *17*, 2394-2408.

⁽²⁾ Mukamel, S. Principles of Nonlinear Optical Spectroscopy. 1995.

the signal is defined as

$$\begin{split} S_{int}(\tau,\omega_{pr}) &= S_{int}^{GSB}(\tau,\omega_{pr}) + S_{int}^{SE}(\tau,\omega_{pr}) + S_{int}^{ESA}(\tau,\omega_{pr}) \\ S_{int}^{GSB}(\tau,\omega_{pr}) &= \int d\boldsymbol{R}_g d\boldsymbol{P}_g \hat{D}_{0,IC}(\omega_{pu},\boldsymbol{R}_g,\boldsymbol{P}_g) \hat{W}_{0,IC}^{int}(\omega_{pr},\boldsymbol{R}_g(\tau),\boldsymbol{P}_g(\tau)) \\ S_{int}^{SE}(\tau,\omega_{pr}) &= \int d\boldsymbol{R}_g d\boldsymbol{P}_g \hat{D}_{I,IC}(\omega_{pu},\boldsymbol{R}_e,\boldsymbol{P}_e) \hat{W}_{I,IC}^{int}(\omega_{pr},\boldsymbol{R}_e(\tau),\boldsymbol{P}_e(\tau)) \\ S_{int}^{ESA}(\tau,\omega_{pr}) &= -\int d\boldsymbol{R}_g d\boldsymbol{P}_g \hat{D}_{I,IC}(\omega_{pu},\boldsymbol{R}_e,\boldsymbol{P}_e) \hat{W}_{I,IC}^{int}(\omega_{pr},\boldsymbol{R}_e(\tau),\boldsymbol{P}_e(\tau)) \end{split}$$

Doorway-Window Approximations of Signals

If we allow internal conversion

$$D_{0,IC}(\omega_{pu}, \mathbf{R}_{g}, \mathbf{P}_{g}) = \begin{bmatrix} D_{0}(\omega_{pu}, \mathbf{R}_{g}, \mathbf{P}_{g}), \text{ if trajectory stays within } \{0\} \\ 0, \text{ if trajectory stays within } \{I\} \\ -D_{I}(\omega_{pu}, \mathbf{R}_{g}, \mathbf{P}_{g}), \text{ if trajectory jumps from } \{I\} \text{ to } \{0\} \end{bmatrix}$$

 $D_{I,IC}(\omega_{pu}, \boldsymbol{R}_{e}, \boldsymbol{P}_{e}) = \begin{bmatrix} 0, \text{if trajectory stays within } \{0\} \\ D_{I}(\omega_{pu}, \boldsymbol{R}_{e}, \boldsymbol{P}_{e}), \text{if trajectory stays within } \{I\} \\ 0, \text{if trajectory jumps from } \{I\} \text{ to } \{0\} \end{bmatrix}$

Doorway-Window Approximations of Signals

and

 $W_{0,IC}^{int}(\omega_{pr}, \boldsymbol{R}_{g}(\tau), \boldsymbol{P}_{g}(\tau)) = \begin{bmatrix} W_{0}^{int}(\omega_{pr}, \boldsymbol{R}_{g}(\tau), \boldsymbol{P}_{g}(\tau)), \text{ if trajectory stays within } \{0\} \\ 0, \text{ if trajectory stays within } \{I\} \\ W_{0}^{int}(\omega_{pr}, \boldsymbol{R}_{g}(\tau), \boldsymbol{P}_{g}(\tau)), \text{ if trajectory jumps from } \{I\} \text{ to } \{0\} \end{bmatrix}$

 $W_{I,IC}^{int}(\omega_{pr}, \mathbf{R}_{e}(\tau), \mathbf{P}_{e}(\tau)) = \begin{bmatrix} 0, \text{ if trajectory stays within } \{0\} \\ W_{I}^{int}(\omega_{pr}, \mathbf{R}_{e}(\tau), \mathbf{P}_{e}(\tau)), \text{ if trajectory stays within } \{I\} \\ 0, \text{ if trajectory jumps from } \{I\} \text{ to } \{0\} \end{bmatrix}$

 $W_{II,IC}^{int}(\omega_{pr}, \mathbf{R}_{e}(\tau), \mathbf{P}_{e}(\tau)) = \begin{bmatrix} 0, \text{ if trajectory stays within } \{0\} \\ W_{II}^{int}(\omega_{pr}, \mathbf{R}_{e}(\tau), \mathbf{P}_{e}(\tau)), \text{ if trajectory stays within } \{I\} \\ 0, \text{ if trajectory jumps from } \{I\} \text{ to } \{0\} \end{bmatrix}$

Photoinduced Energy Transfers in Dendrimers

Nanostar dendrimer

- Photoinduced energy transfer process occurs from the short-length to the longlength units in dendrimer system ultrafastly.
- (1) Kirkwood, J. C.; Scheurer, C.; Chernyak, V.; Mukamel, S. J. Chem. Phys. 2001, 114, 2419-2429.
- (2) Kleiman, V. D.; Melinger, J. S.; McMorrow, D. J. Phys. Chem. B 2001, 105, 5595-5598.
- (3) Ortiz, W.; Krueger, B. P.; Kleiman, V. D.; Krause, J. L.; Roitberg, A. E. J. Phys. Chem. B 2005, 109, 11512-9.
- (4) Huang, J.; Du, L.; Hu, D.; Lan, Z. J Comput Chem 2015, 36, 151-63.
- (5) Nelson, T.; Fernandez-Alberti, S.; Roitberg, A. E.; Tretiak, S. Acc. Chem. Res. 2014, 47, 1155-1164
- (6) Freixas, V. M.; Ondarse-Alvarez, D.; Tretiak, S.; Makhov, D. V.; Shalashilin, D. V.; Fernandez-Alberti, S. J. Chem. Phys. 2019, 150, 124301.

Excited States of Dendrimers

Electronic structure calculations (TD/CAM-B3LYP/6-31G)

- S_1 is nearly a LE state at the 3-ring unit
- S_2 is a hybrid LE state at the 2-ring unit and CT state.

On-the-Fly BOMD and Nonadiabatic Dynamics

Nonadiabatic dynamics

- Fewest switches trajectories surface hopping
- > Nonadiabatic dynamics start from S_1 , S_2 , and S_3 with 200 trajectories
- BO dynamics at ground state
- ➢ Transition dipole moment between excited states (up to 150) are recorded

Time-dependent electronic populations

• The electronic population decays to S1 very efficiently from high-lying excited states.

Transient-Absorption Pump-Probe Integral Signals

25

25

05

50

 $(r_2 - r_3)/\sqrt{2}$

50

Time (fs)

75

75

100

100

• The oscillation of the SE signal is induced by the symmetric stretching vibration of the CC triplet bonds (r2 and r3) at the 3-ring unit.

Hu, Peng, Chen, Gelin, Lan, JPCL, 2021, 12, 39, 9710-9719

Transient-Absorption Pump-Probe Integral Signals

The disappearance of the signal in the Y-axis direction and appearance in the X-axis direction clearly indicates the energy transfer process from the 2-ring to 3-ring unit.
 Hu, Peng, Chen, Gelin, Lan, JPCL, 2021, 12, 39, 9710–9719

Transient-Absorption Pump-Probe Dispersed Signals

 $\omega_{pu} = 4.03 \ eV$ resonant with S₁

Hu, Peng, Chen, Gelin, Lan, JPCL, 2021, 12, 39, 9710–9719

Transient-Absorption Pump-Probe Dispersed Signals

Hu, Peng, Chen, Gelin, Lan, JPCL, 2021, 12, 39, 9710–9719

Message to take home

> The polarizable TA PP signals are useful tool to detect the excited-state energy transfer processes, if the involved excited states display different transition energies, transitiondipole-moment orientations.

Hu, Peng, Chen, Gelin, Lan, JPCL, 2021, 12, 39, 9710-9719

Nonadiabatic Dynamics of Azomethane (CH₃N=NCH₃)

Nonadiabatic dynamics

- Fewest switches trajectories surface hopping
- \triangleright Nonadiabatic dynamics start from S₁ with 200 trajectories
- ➢ BO dynamics at ground state to calculate GSB signals
- Transition dipole moment between excited states are recorded

Electronic structure calculations

- ➤ OM2/MRCI(8, 7) by MNDO
- ➤ SA-CASSCF(6, 4)/6-31G* by Molpro
- XMS-CASPT2(6, 4)/cc-pVDZ by BAGEL Interface to JADE

DOI: 10.1021/acs.jpclett.1c03373

the nonadiabatic dynamics of azomethane

Time-dependent electronic populations

Similar population dynamics are obtained in the TSH dynamics at the OM2/MRCI and SA-CASSCF levels

The TSH dynamics at the XMS-CASPT2 level shows a longer time scale (249 fs)

DOI: 10.1021/acs.jpclett.1c03373

Integral TA PP signal of azomethane

OM2/MRCI signal is initially dominated by ESA, but later exhibits hot and cold GSB

SA-CASSCF signal is dominated by the cold GSB

XMS-CASPT2 signals exhibits pronounced GSB and ESA

 The early-time TA PP signals in the SA-CASSCF and XMS-CASPT2 spectra are similar, which correspond to SE.
 DOI: 10.1021/acs.jpclett.1c03373

Non-Condon Effects

- XMS-CASPT2 pathway is flatter compared to the OM2/MRCI and SA-CASSCF pathways.
- The S₀-S₁ TDMs depend dramatically on the chosen levels of the electronic structure theories.
- > Non-Condon effect is important in the explanation of TA PP signals.

Message to Take Home

Nonadiabatic population dynamics and time-resolved stimulatedemission signals may not contain identical information, owing to the non-Condon effects.

Different electronic-structure
 methods may have different
 impacts on simulated population
 dynamics and time-resolved TA PP
 spectra.

DOI: 10.1021/acs.jpclett.1c03373

Excited-State Dynamics

Accuracy

ML-MCTDH

Transfer-Tensor Method

λ=0.1J

λ=2J

 $\langle \sigma_z(t) \rangle$

 $\langle \sigma_z(t)
angle$ 0.0

-0.

0

-0.5

-1.0 **L**

0.1

0.2

time (ps)

0.02

0.01 0.02

0.3

0.4

 $\Omega = 1/3$

 $\zeta = 0.1$

 $\beta = 3.0$

TTM TBSH

Learning period

20

15

V Exact

 $\Omega = 1/3$

 $\zeta = 0.5$

 $\beta = 3.0$

10

t

TTM

TBSH

Learning period

t

3 4 5 6 7 8

Exact

[Cerrillo, J.; Cao, J. Phy. Rev. Lett., 112, 110401 (2014)]

[Kananenka, A. A.; Hsieh, C.-Y.; Cao, J.; Geva, E. J. Phys. Chem. Lett., 7, 4809-4814 (2016)]

Long-Time Dynamics by ML Method

Artificial Neural Networks •

Nat

Recurrent Neural Networks

400

Kernel Ridge Regression

Convolutional Neural Networks

next time step predicted

- Bandyopadhyay, S.; Huang, Z.; Sun, K.; Zhao, Y. Chem. Phys., 515, 272-278 (2018) ٠
- Yang, B.; He, B.; Wan, J.; Kubal, S.; Zhao, Y. Chem. Phys., 528, 110509 (2020)
- Rodríguez, L. E. H.; Kananenka, A. A. J. Phys. Chem. Lett., 12, 2476-2483 (2021) ٠
- Ullah, A; Dral, P. O, New J. Phys., 2021, 23, 113019. DOI: 10.1088/1367-2630/ac3261. ٠

Long Short-Term Memory RNN

$$i_{(t)} = \sigma (W_{xi}^T x_{(t)} + W_{hi}^T h_{(t-1)} + b_i),$$

$$f_{(t)} = \sigma (W_{xf}^T x_{(t)} + W_{hf}^T h_{(t-1)} + b_f),$$

$$o_{(t)} = \sigma (W_{xo}^T x_{(t)} + W_{ho}^T h_{(t-1)} + b_o),$$

$$g_{(t)} = tanh (W_{xg}^T x_{(t)} + W_{hg}^T h_{(t-1)} + b_g),$$

$$c_{(t)} = f_{(t)} \cdot c_{(t-1)} + i_{(t)} \cdot g_{(t)},$$

$$y_{(t)} = h_{(t)} = o_{(t)} \cdot tanh(c_{(t)}).$$

Bootstrap Resampling Method

• This powerful approach solves the model uncertainty and the model misspecification problems.

Simulation of Open Quantum Dynamics with Bootstrap-Based LSTM-NN

The quantum dynamics predicted by the bootstrap-based LSTM-NNs *vs.* the ML-MCTDH quantum dynamics with symmetric models of (a) and (b), asymmetric models of (c) and (d).

Lin, Peng, Gu, Lan, JPCL. 10.1021/acs.jpclett.1c02672

The LSTM-RNN models can be used to simulate the long-time dynamics evolutions of open quantum systems.

The bootstrap resample method can give us the rough estimation of model uncertainty.

Lin, Peng, Gu, Lan, *JPCL*. 10.1021/acs.jpclett.1c02672

Research highlights

On-the-fly TSH Dynamics

Method and code developments:

Ab initio semiclassical nonadiabatic dynamics

- Initial sampling
- Surface-hopping dynamics (Tully, Zhu-Nakamura)
- Electronic structures: TDDFT, CIS, ADC(2), CASSCF
- Packages :Turbomole, Gaussian, GAMESS, Molpro
- All atoms; real systems; real time
- Analytical and numerical NAC

JCTC, 11, 1360,(2015); *PCCP* 19, 19168-19177 (2017)

Mapping Hamiltonian

$$\hat{\phi}_{n} \langle \phi_{m} | \mapsto a_{n}^{+} a_{m}, \\ |\phi_{n} \rangle \mapsto |0_{1} \cdots 1_{n} \cdots 0_{N} \rangle. \\ \hat{x}_{n} = (\hat{a}_{n}^{+} + \hat{a}_{n})/\sqrt{2} \\ \hat{p}_{n} = i(\hat{a}_{n}^{+} - \hat{a}_{n})/\sqrt{2}$$

$$\hat{H} = \sum_{n} \frac{1}{2} (\hat{x}_{n}^{2} + \hat{p}_{n}^{2} - 1) \hat{h}_{nn} \\ + \frac{1}{2} \sum_{n \neq m} (\hat{x}_{n} \hat{x}_{m} + \hat{p}_{n} \hat{p}_{m}) \hat{h}_{nn}$$

Exciton Dynamics

Analysis Dynamics

On-the-fly Dynamics

• JCP, 2016, 2018; PCCP, 2019, 2020; JCTC, 2021

Analysis of trajectory evolution I

- Dimensionality reduction approaches to analyze the surface-hopping dynamics simulation results
- Extract the major molecular motion

- A large number of trajectories
- Polyatomic molecules
- Many degrees of freedom

Multidimensional scaling Isometric feature mapping

JCTC, 2017, 13, 4611–4623

Analysis of trajectory evolution II

 An "automatic" approach to analyze the trajectory similarity and the configuration similarity in the on-the-fly trajectory surface hopping dynamics.

JCP 149, 244104 (2018)

Machine-Learning PES in nonadiabatic dynamics

- The kernel ridge regression is used to build the excited-state PESs
- Nonadiabatic dynamics based on ML-PESs

 Achieve the efficient massive dynamics simulations with a large number of trajectories.

Exciton dynamics in OPV systems

• Methodology: Vibronic Diabatic Hamiltonian, ML-MCTDH, Mapping Hamiltonian dynamics, Tensor Network

• Applications: Excited-state electron/energy transfer, Singlet fission

- Role of Electronphonon couplings Resonance effects
- Quantum coherences

JCP 142, 084706 (2015); *JPCC* 120, 1375-1389 (2016); *JPCC* 121, 27263-27273 (2017); *Chem. Phys.* 515, 603 (2018); *JPCA* 121, 9567 (2017)

Acknowledgement and Starting

Guangzhou in China

City view of Guangzhou

South China Normal University

Funding: NSCF

Thanks my current and previous group members:

- Dr. Deping Hu, Mr. Jiawei Peng, Miss Kunni Lin,
- Mr. Qinghai Cui, Miss Juanjuan Zhang, Mr. Shichen Lin
- Dr. Yu Xie, Dr. Jie Zheng

Thanks my collaborators:

Prof Maxim Gelin, Prof. Fenglong Gu, Prof. Chao Xu

New Postdoc and Research Assistant Positions are open !!!

